[1] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[2] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[3] HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
[4] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[5] REDMON J, FARHADI A. Yolov3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[6] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection[J]. arXiv:2004.
10934, 2020.
[7] 窦智, 胡晨光, 李庆华, 等. 改进YOLOv7的小样本钢板表面缺陷检测算法[J]. 计算机工程与应用, 2023, 59(23): 283-292.
DOU Z, HU C G, LI Q H, et al. Improved YOLOv7 algorithm for small sample steel plate surface defect detection[J]. Computer Engineering and Applications, 2023, 59(23): 283-292.
[8] 赵春华, 罗顺, 谭金铃, 等. 基于PC-YOLOv7算法钢材表面缺陷检测[J]. 国外电子测量技术, 2023, 42(9): 137-145.
ZHAO C H, LUO S, TAN J L, et al. Detection of steel surface defects based on PC-YOLOv7 algorithm[J]. Foreign Electronic Measurement Technology, 2023, 42(9): 137-145.
[9] 冷浩, 夏骄雄. 基于改进YOLOv7的金属表面缺陷检测方法[J]. 计算机时代, 2023(9): 48-53.
LENG H, XIA J X. Metal surface defect detection method based on improved YOLOv7[J]. Computer Era, 2023(9): 48-53.
[10] 齐向明, 董旭. 改进Yolov7-tiny的钢材表面缺陷检测算法[J]. 计算机工程与应用, 2023, 59(12): 176-183.
QI X M, DONG X. Improved Yolov7-tiny algorithm for steel surface defect detection[J]. Computer Engineering and Applications, 2023, 59(12): 176-183.
[11] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detec-tors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[12] LI H, LI J, WEI H, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[J]. arXiv:2206.02424, 2022.
[13] TANG Y, HAN K, GUO J, et al. GhostNetv2: enhance cheap operation with long-range attention[C]//Advances in Neural Information Processing Systems, 2022: 9969-9982.
[14] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[15] HOWARD A G, ZHU M, CHEN B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017.
[16] MA N, ZHANG X, ZHENG H T, et al. Shufflenet v2: practical guidelines for efficient CNN architecture design[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 116-131.
[17] CHEN J, KAO S, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 12021-12031.
[18] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[J]. arXiv:1409.0473, 2014.
[19] ZHANG D, ZHENG Z, LI M, et al. CSART: channel and spatial attention-guided residual learning for real-time object tracking[J]. Neurocomputing, 2021, 436: 260-272.
[20] HADSELL R, CHOPRA S, LECUN Y. Dimensionality reduction by learning an invariant mapping[C]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), 2006: 1735-1742.
[21] SCHROFF F, KALENICHENKO D, PHILBIN J. Facenet: a unified embedding for face recognition and clustering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 815-823.
[22] WEN Y, ZHANG K, LI Z, et al. A discriminative feature learning approach for deep face recognition[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, October 11-14, 2016. [S.l.]: Springer International Publishing, 2016: 499-515.
[23] WANG H, WANG Y, ZHOU Z, et al. Cosface: large margin cosine loss for deep face recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 5265-5274.
[24] YU J, JIANG Y, WANG Z, et al. Unitbox: an advanced object detection network[C]//Proceedings of the 24th ACM International Conference on Multimedia, 2016: 516-520.
[25] REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 658-666.
[26] GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[J]. arXiv:2205.12740, 2022.
[27] HENDRYCKS D, GIMPEL K. Gaussian error linear units (gelus)[J]. arXiv:1606.08415, 2016.
[28] EVERINGHAM M, VAN G L, WILLIAMS C K I, et al. The pascal visual object classes (voc) challenge[J]. International Journal of Computer Vision, 2010, 88: 303-338. |