计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (16): 61-75.DOI: 10.3778/j.issn.1002-8331.2312-0034
管含宇,凌云,汪舒磊
出版日期:
2024-08-15
发布日期:
2024-08-15
GUAN Hanyu, LING Yun, WANG Shulei
Online:
2024-08-15
Published:
2024-08-15
摘要: 安全帽佩戴实时检测是智慧工地和智慧交通必不可少的一部分,基于深度学习的安全帽检测逐渐取代了传统的检测方法,在精度、性能和效率等方面取得了显著进展,在现实场景中有了广泛的应用。为了便于安全帽算法的研究,综合分析了各应用场景中安全帽目标检测算法的研究现状。总结了目标检测算法的发展历史;对近年来国内外学者的安全帽检测算法研究进行归纳,对比总结了不同算法不同优化的优缺点,着重分析了安全帽检测算法的轻量化方法;根据目前目标检测算法在实际应用场景中出现的不足,对安全帽检测的深度学习算法的未来研究方向进行了展望。
管含宇, 凌云, 汪舒磊. 单阶段安全帽检测深度学习算法综述[J]. 计算机工程与应用, 2024, 60(16): 61-75.
GUAN Hanyu, LING Yun, WANG Shulei. Review of Deep Learning Algorithms for One-Stage Safety Helmet Detection[J]. Computer Engineering and Applications, 2024, 60(16): 61-75.
[1] 董文轩, 梁宏涛, 刘国柱, 等. 深度卷积应用于目标检测算法综述[J]. 计算机科学与探索, 2022, 16(5): 1025-1042. DONG W X, LIANG H T, LIU G Z, et al. Review of deep convolution applied to target detection algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1025-1042. [2] 张立艺, 武文红, 牛恒茂, 等. 深度学习中的安全帽检测算法应用研究综述[J]. 计算机工程与应用, 2022, 58(16): 1-17. ZHANG L Y, WU W H, NIU H M, et al. Summary of application research on helmet detection algorithm based on deep learning[J]. Computer Engineering and Applications, 2022, 58(16): 1-17. [3] 李政谦, 刘晖. 基于深度学习的安全帽佩戴检测算法综述[J]. 计算机应用与软件, 2022, 39(6): 194-202. LI Z Q, LIU H. Helmet wearing detection algorithm based on deep learning[J]. Computer Applications and Software, 2022, 39(6): 194-202. [4] 高腾, 张先武, 李柏. 深度学习在安全帽佩戴检测中的应用研究综述[J]. 计算机工程与应用, 2023, 59(6): 13-29. GAO T, ZHANG X W, LI B. Review on application of deep learning in helmet wearing detection[J]. Computer Engineering and Applications, 2023, 59(6): 13-29. [5] SHETTY S. Application of convolutional neural network for image classification on Pascal VOC challenge 2012 dataset[J]. arXiv:1607.03785, 2016. [6] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the 13th European Conference on Computer Vision, Zurich, Sep 6-12, 2014. Cham: Springer, 2014: 740-755. [7] DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009: 248-255. [8] KUZNETSOVA A, ROM H, ALLDRIN N, et al. The open images dataset v4: unified image classification, object detection, and visual relationship detection at scale[J]. International Journal of Computer Vision, 2020, 128(7): 1956-1981. [9] GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237. [10] OJALA T, PIETIKAINEN M, HARWOOD D. Performance evaluation of texture measures with classification based on kullback discrimination of distributions[C]//Proceedings of 12th International Conference on Pattern Recognition, 1994, 1: 582-585. [11] PAPAGEORGIOU C P, OREN M, POGGIO T. A general framework for object detection[C]//Proceedings of the 6th International Conference on Computer Vision, 1998: 555-562. [12] LINDEBERG T. Scale invariant feature transform[J]. Scholarpedia, 2012, 7(5): 10491. [13] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005: 886-893. [14] ZITNICK C L, DOLLáR P. Edge boxes: locating object proposals from edges[C]//Proceedings of the 13th European Conference on Computer Vision, Zurich, Sep 6-12, 2014. Cham: Springer, 2014: 391-405. [15] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587. [16] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, 2015: 1440-1448. [17] QIAN R, LIU Q, YUE Y, et al. Road surface traffic sign detection with hybrid region proposal and fast R-CNN[C]//Proceedings of the 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, 2016: 555-559. [18] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. [19] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [C]//Advances in Neural Information Processing Systems 28, 2015. [20] HMIDANI O, ALAOUI E M I. A comprehensive survey of the R-CNN family for object detection[C]//Proceedings of the 2022 5th International Conference on Advanced Communication Technologies and Networking, 2022: 1-6. [21] CHEN Z, WANG L, LI B, et al. An improved Faster R-CNN transmission line bolt defect detection method[C]//Proceedings of the 2022 World Automation Congress, 2022: 82-85. [22] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788. [23] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271. [24] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 2015 International Conference on Machine Learning, 2015: 448-456. [25] REDMON J, FARHADI A. YOLOV3: an incremental improvement[J]. arXiv:1804.02767, 2018. [26] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. [27] CHENG R, HE X, ZHENG Z, et al. Multi-scale safety helmet detection based on SAS-YOLOv3-tiny[J]. Applied Sciences, 2021, 11(8): 3652. [28] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020. [29] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 390-391. [30] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768. [31] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv: 2209.02976, 2022. [32] DING X, ZHANG X, MA N, et al. RepVGG: making VGG-style convnets great again[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13733-13742. [33] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475. [34] ZHANG X, ZENG H, GUO S, et al. Efficient long-range attention network for image super-resolution[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 649-667. [35] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 21-37. [36] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, 2017: 2980-2988. [37] TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790. [38] TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one?stage object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, 2019: 9627-9636. [39] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409. 1556, 2014. [40] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017. [41] ZHENG X, YAO J, XU X. Violation monitoring system for power construction site[C]//Proceedings of the IOP Conference Series: Earth and Environmental Science, 2019. [42] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708. [43] WU F, JIN G, GAO M, et al. Helmet detection based on improved YOLO V3 deep model[C]//Proceedings of the 2019 IEEE 16th International Conference on Networking, Sensing and Control, 2019: 363-368. [44] 曹燕. 基于深度学习的建筑工人安全帽检测方法研究[D]. 苏州: 苏州科技大学, 2021. CAO Y. Research on detection methods of construction workers’ safety helmets based on deep learning[D]. Suzhou: Suzhou University of Science and Technology, 2021. [45] HAN J, LIU Y, LI Z, et al. Safety helmet detection based on YOLOv5 driven by super-resolution reconstruction[J]. Sensors, 2023, 23(4): 1822. [46] GENG R, MA Y, HUANG W. An improved helmet detection method for YOLOv3 on an unbalanced dataset[C]//Proceedings of the 2021 3rd International Conference on Advances in Computer Technology, Information Science and Communication, 2021: 328-332. [47] CHANG H, XU Y, HUANG S, et al. Multiple complex weather tolerant and low cost solution for helmet detection[J]. IEEE Access, 2023, 11: 50264-50271. [48] 邓庆昌. 工地施工现场的安全帽检测算法研究与系统实现[D]. 镇江: 江苏科技大学, 2022. DENG Q C. Algorithm research and system realization of safety helmet detection on construction site[D]. Zhenjiang: Jiangsu University of Science and Technology, 2022. [49] ZHANG Y, QIU Y, BAI H. FEFD-YOLOV5: a helmet detection algorithm combined with feature enhancement and feature denoising[J]. Electronics, 2023, 12(13): 2902. [50] DONG G, ZHANG Y, XIE W, et al. A safety helmet-wearing detection method based on cross-layer connection[J]. Journal of Real-Time Image Processing, 2024, 21(3): 1-10. [51] HAN K, ZENG X. Deep learning-based workers safety helmet wearing detection on construction sites using multi-scale features[J]. IEEE Access, 2022, 10: 718-729. [52] DHYANJITH G, MANOHAR N, RAJ A G V. Helmet detection using YOLO V3 and single shot detector[C]//Proceedings of the 2021 6th International Conference on Communication and Electronics Systems, 2021: 1844-1848. [53] HAO S, HE J, LUO L, et al. Helmet wearing detection algorithm based on improved YOLOX[C]//Proceedings of the 2022 5th International Conference on Pattern Recognition and Artificial Intelligence, 2022: 316-321. [54] LIU J, LIU L. Helmet wearing detection based on YOLOv4-MT[C]//Proceedings of the 2021 4th International Conference on Robotics, Control and Automation Engineering, 2021: 1-5. [55] FANG J, LIN X, ZHOU F, et al. Safety helmet detection based on optimized YOLOv5[C]//Proceedings of the 2023 Prognostics and Health Management Conference, 2023: 117-121. [56] DENG B, LEI X, YE M. Safety helmet detection method based on YOLO v4[C]//Proceedings of the 2020 16th International Conference on Computational Intelligence and Security, 2020: 155-158. [57] CHEN J, ZHU J, LI Z, et al. YOLOv7-WFD: a novel convolutional neural network model for helmet detection in high-risk workplaces[J]. IEEE Access, 2023, 11: 113580-113592. [58] WANG L, ZHANG X, YANG H. Safety helmet wearing detection model based on improved YOLO-M[J]. IEEE Access, 2023, 11: 26247-26257. [59] ARANI E, GOWDA S, MUKHERJEE R, et al. A comprehensive study of real-time object detection networks across multiple domains: a survey[J]. arXiv:2208.10895, 2022. [60] 陈家亮. 基于改进YOLOv5的安全帽佩戴检测算法[D]. 长春: 吉林大学, 2023. CHEN J L. A helmet wearing detection algorithm based on the improved YOLOv5[D]. Changchun: Jilin University, 2023. [61] TAN S, LU G, JIANG Z, et al. Improved YOLOv5 network model and application in safety helmet detection[C]//Proceedings of the 2021 IEEE International Conference on Intelligence and Safety for Robotics, 2021. [62] AGORKU G, AGBOBLI D, CHOWDHURY V, et al. Real-time helmet violation detection using YOLOv5 and ensemble learning [J]. arXiv:2304.09246, 2023. [63] TAI W, WANG Z, LI W, et al. DAAM-YOLOV5: a helmet detection algorithm combined with dynamic anchor box and attention mechanism[J]. Electronics, 2023, 12(9): 2094. [64] 熊江宜. 基于深度学习的轻量级安全帽佩戴检测算法研究[D]. 荆州: 长江大学, 2021. XIONG J Y. A research on lightweight safety helmet detection algorithm based on deep learning[D]. Jingzhou: Yangtze University, 2021. [65] 刘超. 基于YOLOv4-tiny的安全帽佩戴检测算法研究[D]. 南京: 南京林业大学, 2022. LIU C. Research on helmet wearing detection algorithm based on YOLOv4-tiny[D]. Nanjing: Nanjing Forestry University, 2022. [66] FU L. Construction site safety helmet wearing detection method based on improved YOLOv5[J]. Journal of Physics: Conference Series, 2023, 2560(1): 012042. [67] ZHAN H, PEI X. Based on improved single shot multibox detector construction site helmet detection algorithm[C]//Proceedings of the 2023 5th International Conference on Communications, Information System and Computer Engineering, 2023: 425-428. [68] DATH M K, RAKHRA M, SINGH D, et al. Basic design for the implementation of automatic surveillance system on helmet detection[C]//Proceedings of the 2022 4th International Conference on Artificial Intelligence and Speech Technology, 2022: 1-5. [69] MOHAN P, NARAYAN P, SHARMA L, et al. Helmet detection using faster region-based convolutional neural networks and single-shot multibox detector[C]//Proceedings of the 2021 8th International Conference on Smart Computing and Communications, 2021: 209-214. [70] VIGNESH R A G, MANOHAR N, DHYANJITH G. Helmet detection using single shot detector (SSD)[C]//Proceedings of the 2021 2nd International Conference on Electronics and Sustainable Communication Systems, 2021: 1241-1244. [71] FENG H, HU J. Helmet wearing detection using improved single shot multibox detector[C]//Proceedings of the 2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing, 2022: 444-447. [72] WANG Y. Research on a safety helmet detection method based on smart construction site[C]//Proceedings of the 2021 IEEE International Conference on Advances in Electrical Engineering and Computer Applications, 2021: 341-343. [73] CHEN X, XIE Q. Safety helmet-wearing detection system for manufacturing workshop based on improved YOLO-v7[J]. Journal of Sensors, 2023. DOI:10.1155/2023/7230463. [74] SOLTANIKAZEMI E, DHAKAL A, HATUWAL B K, et al. Real-time helmet violation detection in AI city challenge 2023 with genetic algorithm-enhanced YOLOv5[C]//Proceedings of the 2023 IEEE Applied Imagery Pattern Recognition Workshop, 2023. [75] LI X, WANG W, WU L, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[C]//Advances in Neural Information Processing Systems 33, 2020: 21002-21012. [76] 吕宗喆, 徐慧, 杨骁, 等. 面向小目标的YOLOv5安全帽检测算法[J]. 计算机应用, 2023, 43(6): 1943-1949. LV Z Z, XU H, YANG X, et al. Small object detection algorithm of YOLOv5 for safety helmet[J]. Journal of Computer Applications, 2023, 43(6): 1943-1949. [77] LIAO W. Research on detection algorithm of safety helmet based on improved YOLOX[J]. Frontiers in Computing and Intelligent Systems, 2023, 3(2): 136-138. [78] HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589. [79] ZAIDI S S A, ANSARI M S, ASLAM A, et al. A survey of modern deep learning based object detection models[J]. Digital Signal Processing, 2022, 126: 103514. [80] ALFONSO R, DAHER C, ARZAMENDIA M, et al. A motorcyclist helmet detection system through a two-stage CNN approach[C]//Proceedings of the 2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, 2021: 1-6. [81] DENG L, LI H, LIU H, et al. A lightweight YOLOv3 algorithm used for safety helmet detection[J]. Scientific Reports, 2022, 12(1): 10981. [82] 赵万福. 基于深度学习的安全帽佩戴检测算法研究[D]. 西安: 长安大学, 2022. ZHAO W F. Research on detection algorithm of helmet wearing based on deep learning[D]. Xi’an: Chang’an University, 2022. [83] CHEN J, DENG S, WANG P, et al. Lightweight helmet detection algorithm using an improved YOLOv4[J]. Sensors, 2023, 23(3): 1256. [84] REN D, SUN T, YU C, et al. Research on safety helmet detection for construction site[C]//Proceedings of the 2021 International Conference on Computer Information Science and Artificial Intelligence, 2021: 186-189. [85] 郭奕裕, 周箩鱼. 安全帽佩戴检测网络模型的轻量化设计[J]. 计算机工程, 2023, 49(4): 312-320. GUO Y Y, ZHOU L Y. Lightweight design of safety helmet wearing detection network model[J]. Computer Engineering, 2023, 49(4): 312-320. [86] DENG Z, YAO C, YIN Q. Safety helmet wearing detection based on jetson nano and improved YOLOv5[J]. Advances in Civil Engineering, 2023. DOI:10.1155/2023/1959962. [87] 李延满, 王必恒, 赵羚焱. 基于轻量化YOLOv5的安全帽检测[J]. 计算机与现代化, 2023(10): 59-64. LI Y M, WANG B H, ZHAO L Y. Safety helmet detection based on lightweight YOLOv5[J]. Computer and Modernization, 2023(10): 59-64. [88] 赵红成, 田秀霞, 杨泽森, 等. YOLO-S: 一种新型轻量的安全帽佩戴检测模型[J]. 华东师范大学学报(自然科学版), 2021(5): 134-145. ZHAO H C, TIAN X X, YANG Z S, et al. YOLO-S:a new lightweight helmet wearing detection model[J]. Journal of East China Normal University (Natural Science), 2021(5): 134-145. [89] 张传深, 徐升, 胡佳, 等. 基于巡逻无人机的轻量型安全帽佩戴检测方法与应用[J]. 集成技术, 2023, 12(4): 18-31. ZHANG C S, XU S, HU J, et al. Research on safety helmet recognition method and application using patrol unmanned aerial vehicle[J]. Journal of Integration Technology, 2023, 12(4): 18-31. [90] 梁思成. 基于卷积神经网络的安全帽检测研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. LIANG S C. Research on safety helmet wearing detection based on convolutional neural network[D]. Harbin: Harbin Institute of Technology, 2021. [91] AN Q, XU Y, YU J, et al. Research on safety helmet detection algorithm based on improved YOLOv5s[J]. Sensors, 2023, 23(13): 5824. [92] JIA C. Application effect analysis for helmet detection algorithm based on YOLOV5[J]. Highlights in Science, Engineering and Technology, 2023, 39: 1214-1220. [93] TAO Y J, PAN L. Improved lightweight helmet wearing detection method for YOLOXs[C]//Proceedings of the 2022 China Automation Congress, 2022: 737-741. [94] 徐帅驰. 基于深度学习的边端安全帽识别系统设计[D]. 荆州: 长江大学, 2023. XU S C. Design of edge-end helmet recognition system based on deep learning[D]. Jingzhou: Yangtze University, 2023. [95] 张翼翔, 林松, 李雪. 基于CenterNet-GhostNet的选煤厂危险区域人员检测[J]. 工矿自动化, 2022, 48(4): 66-71. ZHANG Y X, LIN S, LI X. Personnel detection in dangerous area of coal preparation plant based on CenterNet-GhostNet[J]. Industry and Mine Automation, 2022, 48(4): 66-71. [96] 黄品超, 刘石坚, 徐戈, 等. 关联增强改进的CenterNet安全帽检测方法[J]. 计算机工程与应用, 2023, 59(17): 250-256. HUANG P C, LIU S J, XU G, et al. Helmet wearing detection method based on improved CenterNet with enhanced associations[J]. Computer Engineering and Applications, 2023, 59(17): 250-256. [97] SHEN X, LI B, WANG X, et al. Yolov5-based channel pruning is used for real-time detection of construction workers’ safety helmets and anti-slip shoes in informationalized construction sites[J]. Journal of Physics: Conference Series, 2021. DOI:10.1088/1742-6596/2031/1/012027. |
[1] | 王彩玲, 闫晶晶, 张智栋. 基于多模态数据的人体行为识别方法研究综述[J]. 计算机工程与应用, 2024, 60(9): 1-18. |
[2] | 廉露, 田启川, 谭润, 张晓行. 基于神经网络的图像风格迁移研究进展[J]. 计算机工程与应用, 2024, 60(9): 30-47. |
[3] | 杨晨曦, 庄旭菲, 陈俊楠, 李衡. 基于深度学习的公交行驶轨迹预测研究综述[J]. 计算机工程与应用, 2024, 60(9): 65-78. |
[4] | 宋建平, 王毅, 孙开伟, 刘期烈. 结合双曲图注意力网络与标签信息的短文本分类方法[J]. 计算机工程与应用, 2024, 60(9): 188-195. |
[5] | 车运龙, 袁亮, 孙丽慧. 基于强语义关键点采样的三维目标检测方法[J]. 计算机工程与应用, 2024, 60(9): 254-260. |
[6] | 邱云飞, 王宜帆. 双分支结构的多层级三维点云补全[J]. 计算机工程与应用, 2024, 60(9): 272-282. |
[7] | 叶彬, 朱兴帅, 姚康, 丁上上, 付威威. 面向桌面交互场景的双目深度测量方法[J]. 计算机工程与应用, 2024, 60(9): 283-291. |
[8] | 周伯俊, 陈峙宇. 基于深度元学习的小样本图像分类研究综述[J]. 计算机工程与应用, 2024, 60(8): 1-15. |
[9] | 孙石磊, 李明, 刘静, 马金刚, 陈天真. 深度学习在糖尿病视网膜病变分类领域的研究进展[J]. 计算机工程与应用, 2024, 60(8): 16-30. |
[10] | 汪维泰, 王晓强, 李雷孝, 陶乙豪, 林浩. 时空图神经网络在交通流预测研究中的构建与应用综述[J]. 计算机工程与应用, 2024, 60(8): 31-45. |
[11] | 谢威宇, 张强. 基于深度学习的图像中无人机与飞鸟检测研究综述[J]. 计算机工程与应用, 2024, 60(8): 46-55. |
[12] | 周定威, 扈静, 张良锐, 段飞亚. 面向目标检测的数据集标签遗漏的协同修正技术[J]. 计算机工程与应用, 2024, 60(8): 267-273. |
[13] | 许逵, 李鑫卓, 张历, 张俊杰, 杨宁. 自然场景下配电线网施工安全帽佩戴检测算法[J]. 计算机工程与应用, 2024, 60(8): 320-328. |
[14] | 常禧龙, 梁琨, 李文涛. 深度学习优化器进展综述[J]. 计算机工程与应用, 2024, 60(7): 1-12. |
[15] | 周钰童, 马志强, 许璧麒, 贾文超, 吕凯, 刘佳. 基于深度学习的对话情绪生成研究综述[J]. 计算机工程与应用, 2024, 60(7): 13-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||