[1] 黄涛, 李华, 周桂, 等. 实例分割方法研究综述[J]. 计算机科学与探索, 2023, 17(4): 810-816.
HUANG T, LI H, ZHOU G, et al. Survey of research on instance segmentation methods[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 810-816.
[2] 张继凯, 赵君, 张然, 等. 深度学习的图像实例分割方法综述[J]. 小型微型计算机系统, 2021, 42(1): 161-171.
ZHANG J K, ZHAO J, ZHANG R et al. Survey of image instance segmentation methods using deep learning[J]. Journal of Chinese Computer Systems, 2021, 42(1): 161-171.
[3] 杨飞帆, 李军. 面向自动驾驶的YOLO目标检测算法研究综述[J]. 汽车工程师, 2023(11): 1-11.
YANG F F, LI J. Research review of YOLO target detection algorithm for autopilot [J]. Automotive Engineer, 2023(11): 1-11.
[4] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[J]. arXiv:2108.11539, 2021.
[5] REIS D, KUPEC J, HONG J, et al. Real-time flying object detection with YOLOv8[J]. arXiv:2305.09972, 2023.
[6] WANG B, YAN Y, LAN Y, et al. Accurate detection and precision spraying of corn and weeds using the improved YOLOv5 model[J]. IEEE Access, 2023, 11: 29868-29882.
[7] JIANG T, LI C, YANG M, et al. An improved YOLOv5s algorithm for object detection with an attention mechanism[J]. Electronics, 2022, 11(16): 2494.
[8] ROHAN A, RAFAQ M S, HASAN M J, et al. Application of deep learning for livestock behaviour recognition: a systematic literature review[J]. arXiv:2310.13483, 2023.
[9] WANG A, CHEN H, LIN Z et al. RepViT: revisiting mobile CNN from ViT perspective[J]. arXiv:2307.09283, 2023.
[10] SONG Y, ELIBOL A, CHONG N Y. Abdominal multi-organ segmentation based on feature pyramid network and spatial recurrent neural network[J].arXiv:2308.15137, 2023.
[11] HUANG T, HUANG L, YOU S, et al. LightViT: towards light-weight convolution-free vision transformers[J]. arXiv:2207.05557, 2022.
[12] HE L, CHEN Y, WU K. Fuzzy granular deep convolutional network with residual structures[J]. Knowledge-Based Systems, 2022, 258: 109941.
[13] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. arXiv:1709.01507, 2017.
[14] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[J]. arXiv:1910.03151, 2019.
[15] ZHENG Z, WANG P, LIU W, et al. Distance-IoU Loss: faster and better learning for bounding box regression[J]. arXiv:1911.08287, 2019.
[16] GEVORGYAN Z. SIoU Loss: more powerful learning for bounding box regression[J]. arXiv:2205.12740, 2022.
[17] TONG K, WU Y. Rethinking PASCAL-VOC and MS-COCO dataset for small object detection[J]. Journal of Visual Communication and Image Representation, 2023, 93: 103830.
[18] DUMITRU R-G, PETELEAZA D, CRACIUN C. Using DUCK-Net for polyp image segmentation[J]. Scientific Reports, 2023, 13(1): 9803.
[19] LI J, WEN Y, HE L. SCConv: spatial and channel reconstruction convolution for feature redundancy[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 6153-6162.
[20] OUYANG D, HE S, ZHANG G, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, 2023: 1-5. |