计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (10): 196-203.DOI: 10.3778/j.issn.1002-8331.2211-0017
朱瑞鑫,杨福兴
ZHU Ruixin, YANG Fuxing
摘要: 针对运动场景下由于设备移动、相机散焦,导致采集到的图像模糊,图像质量低,以及目标体积小,使目标检测困难的问题,提出了一种改进YOLOv5x目标实时检测模型。采用可变形卷积网络替换部分原始YOLOv5x中传统的卷积层,增强模型在运动场景中细粒度特征提取和小目标检测能力;增加SE注意力机制,解决在卷积过程中,因丢失图像全局上下文信息,造成特征损失的问题,提高了模型在图像模糊情况下小目标的检测精度;引入一种新的边界框回归损失函数SIoU Loss,解决了预测框在回归时随意匹配的问题,提高了模型鲁棒性和泛化能力,加快网络的收敛速度。实验结果表明,相比于YOLOv5x模型,将改进后的算法应用在水下移动机器人生物检测中,模型准确率[P、]召回率[R、]各类平均精度mAP分别提升了5.90个百分点、5.85个百分点、4.38个百分点,有效增强了小目标检测模型的检测性能。