[1] 杨晓英, 王金宇. 面向智能制造混流生产的供应链物流协同策略[J]. 计算机集成制造系统, 2020, 26(10): 2877-2888.
YANG X Y, WANG J Y. Coordination strategy of supply chain logistics for mixed production in intelligent manufacturing[J]. Computer Integrated Manufacturing Systems, 2020, 26(10): 2877-2888.
[2] 陆少军, 崔龙庆, 赵婷, 等. 面向高端装备制造协同优化的人工智能方法研究综述与展望[J]. 计算机集成制造系统, 2022, 28(7): 1940-1952.
LU S J, CUI L Q, ZHAO T, et al. Review and prospect of artificial intelligence methods for collaborative optimization of high-end equipment manufacturing[J]. Computer Integrated Manufacturing Systems, 2022, 28(7): 1940-1952.
[3] EHMKE J F, CAMPBELL A M, THOMAS B W. Optimizing for total costs in vehicle routing in urban areas[J]. Transportation Research, 2018, 116: 242-265.
[4] XU Z, ELOMRI A, POKHAREL S, et al. A model for capacitated green vehicle routing problem with the time-varying vehicle speed and soft time windows[J]. Computers & Industrial Engineering, 2019, 137: 214-230.
[5] ESHTEHADI R, FATHIAN M, DEMIR E. Robust solutions to the pollution-routing problem with demand and travel time uncertainty[J]. Transportation Research Part D, 2017, 51: 351-363.
[6] HUANG Y, ZHAO L, WOENSEL T V, et al. Time-dependent vehicle routing problem with path flexibility[J]. Transportation Research, 2017, 95(1): 169-195.
[7] 李顺勇, 但斌, 葛显龙. 多通路时变网络下低碳车辆路径优化模型与算法[J]. 计算机集成制造系统, 2019, 25(2): 454-468.
LI S Y, DAN B, GE X L. Optimization model and algorithm of low carbon vehicle routing problem under multi-graph time varying net work[J]. Computer Integrated Manufacturing Systems, 2019, 25(2): 454-468.
[8] LI Y, MING K L, TAN Y, et al. Sharing economy to improve routing for urban logistics distribution using electric vehicles[J]. Resources Conservation and Recycling, 2020, 153: 104585.
[9] 王泽, 杨信丰, 刘兰芬. 考虑电量消耗的车辆调度优化研究[J]. 工业工程, 2020, 23(4): 140-147.
WANG Z, YANG X F, LIU L F. A research on vehicle scheduling optimization considering power consumption[J]. Industrial Engineering Journal, 2020, 23(4): 140-147.
[10] 张天瑞, 吴宝库, 周福强. 面向机器人全局路径规划的改进蚁群算法研究[J]. 计算机工程与应用, 2022, 58(1): 282-291.
ZHANG T R, WU B K, ZHOU F Q. Research on improved ant colony algorithm for robot global path planning[J]. Computer Engineering and Applications, 2022, 58(1): 282-291.
[11] 马艳芳, 李保玉, 杨屹夫, 等. 客户分类下生鲜配送两级路径问题与算法研究[J]. 计算机工程与应用, 2021, 57(20): 287-298.
MA Y F, LI B Y, YANG Y F, et al. Two-echelon capacitated vehicle routing model and algorithm for fresh products distribution with customer classification[J]. Computer Engineering and Applications, 2021, 57(20): 287-298.
[12] GOEKE D, SCHNEIDER M. Routing a mixed fleet of electric and conventional vehicles[J]. European Journal of Operational Research, 2015, 245(1): 81-99.
[13] 朱佳莹, 高茂庭. 融合粒子群与改进蚁群算法的AUV路径规划算法[J]. 计算机工程与应用, 2021, 57(6): 267-273.
ZHU J Y, GAO M T. AUV path planning based on particle swarm optimization and improved ant colony optimization[J]. Computer Engineering and Applications, 2021, 57(6): 267-273.
[14] XU W, HU Y, LUO W, et al. A multi-objective scheduling method for distributed and flexible job shop based on hybrid genetic algorithm and tabu search considering operation outsourcing and carbon emission[J]. Computers & Industrial Engineering, 2021, 157: 107318.
[15] 杜明, 郑凯文, 陈子阳, 等. TFP: 高效的最快路径查询处理方法[J]. 清华大学学报 (自然科学版), 2020, 60(8): 656-663.
DU M, ZHENG K W, CHEN Z Y, et al. TFP: efficient algorithm for fastest path queries[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(8): 656-663.
[16] 朱文佳, 范家旭, 陈雪平, 等. 基于计算机试验设计的遗传算法参数配置[J]. 数学的实践与认识, 2020, 50(5): 112-118.
ZHU W J, FAN J X, CHEN X P, et al. On parameter configurations of genetic algorithm based on computer experiment[J]. Mathematics in Practice and Theory, 2020, 50(5): 112-118.
[17] 刘雪梅, 贾勇琪, 兰琳琳, 等. 基于多目标遗传算法的柔性加工线平衡优化[J]. 同济大学学报 (自然科学版), 2016, 44(12): 1910-1917.
LIU X M, JIA Y Q, LAN L L, et al. Optimization of line balancing for flexible machining lines based on multi-objective genetic algorithm[J]. Journal of Tongji University(Natural Science), 2016, 44(12): 1910-1917. |