[1] XU K, TIAN X, YANG X, et al. Intensity-aware single-image deraining with semantic and color regularization[J]. IEEE Transactions on Image Processing, 2021, 30: 8497-8509.
[2] FU X, XIAO J, ZHU Y, et al. Continual image deraining with hypergraph convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45: 9534-9551.
[3] HAO Z, GAI S, LI P. Multi-scale self-calibrated dual-attention lightweight residual dense deraining network based on monogenic wavelets[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(6): 2642-2655.
[4] CUI X, WANG C, REN D, et al. Semi-supervised image deraining using knowledge distillation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32: 8327-8341.
[5] 方思严, 刘斌. 小波分频自注意力Transformer图像去雨网络[J]. 计算机工程与应用, 2024,60(6): 259-273.
FANG S Y, LIU B. Wavelet frequency division self-attention Transformer image deraining network[J]. Computer Engineering and Applications ,2024, 60(6): 259-273.
[6] LI P, GAI S. Single image deraining using multi-scales context information and attention network[J]. Journal of Visual Communication and Image Representation, 2022, 90: 103695.
[7] HUANG Z X, ZHANG J. Contrastive unfolding deraining network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(4):5155-5169.
[8] ZAMIR S W, ARORA A, KHAN S H, et al. Multi-stage progressive image restoration[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021: 14816-14826.
[9] WANG Z, CUN X, BAO J, et al. Uformer: a general U-shaped Transformer for image restoration[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021: 17662-17672.
[10] REN D, ZUO W, HU Q, et al. Progressive image deraining networks: a better and simpler baseline[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 3932-3941.
[11] LIANG Y, ANWAR S, LIU Y. DRT: a lightweight single image deraining recursive Transformer[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2022: 588-597.
[12] GAI S, HUANG X. Reduced biquaternion convolutional neural network for color image processing[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32: 1061-1075.
[13] ZHU X, XU Y, XU H, et al. Quaternion convolutional neural networks[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 645-661.
[14] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[J]. arXiv:2010.11929, 2021.
[15] YANG W, TAN R T, FENG J, et al. Deep joint rain detection and removal from a single image[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 1685-1694.
[16] CHEN L, LU X, ZHANG J, et al. HINet: half instance normalization network for image restoration[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2021: 182-192.
[17] ZHANG H, PATEL V M. Density-aware single image de-raining using a multi-stream dense network[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 695-704.
[18] YASARLA R, PATEL V M. Uncertainty guided multi-scale residual learning-using a cycle spinning CNN for single image de-raining[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 8397-8406.
[19] LI X, WU J, LIN Z, et al. Recurrent squeeze-and-excitation context aggregation net for single image deraining[C]//Proceedings of the European Conference on Computer Vision, 2018. |