计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (15): 297-306.DOI: 10.3778/j.issn.1002-8331.2304-0421

• 工程与应用 • 上一篇    下一篇

基于注意力和重构特征融合的轻量级煤矿安全帽检测方法

董彦强,程德强,张云鹤,寇旗旗,张皓翔   

  1. 1.国家电投集团 内蒙古白音华煤电有限公司露天矿,内蒙古 锡林郭勒盟 026200
    2.中国矿业大学 信息与控制工程学院,江苏 徐州 221116
    3.中国矿业大学 计算机科学与技术学院,江苏 徐州 221116
  • 出版日期:2024-08-01 发布日期:2024-07-30

Lightweight Coal Mine Safety Helmet Detection Method Based on Attention and Reconfiguration Feature Fusion

DONG Yanqiang, CHENG Deqiang, ZHANG Yunhe, KOU Qiqi, ZHANG Haoxiang   

  1. 1.Open-Pit Mine, Inner Mongolia Baiyinhua Coal Power Co., Ltd., State Power Investment Group, Xilingol League, Inner Mongolia 026200, China
    2.School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
    3.School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
  • Online:2024-08-01 Published:2024-07-30

摘要: 针对当前的工人安全帽检测算法模型参数量较大、推理交互时间较长、错检和漏检率较高等问题,提出了一种基于注意力和重构特征融合的轻量级煤矿工人安全帽实时检测方法MS-YOLO。为了在不影响检测精度的前提下压缩模型的大小并提升检测的速度,采用轻量级网络MobileNeXt作为MS-YOLO算法的主干网络;重构了特征路径融合网络PANet,在网络中添加了新的尺度输入、ULSAM-4注意力模块和深度可分离卷积;为了加快模型收敛速度并提高预测框的回归精度,提出了一种新的损失函数CLIoU loss;该研究还建立了一个面向矿井场景的安全帽检测数据集以适用于其特殊的工况环境。通过在标准数据集和自建数据集上进行实验测试,结果表明,MS-YOLO模型不仅保持了较高的检测精度,还具有实时性好、模型轻量化的优点。

关键词: 目标检测, 轻量级网络, 煤矿安全帽检测, 损失函数, 注意力机制

Abstract: Aiming at the problems of large model parameters, long inference interaction time, high error detection and missing rate, a lightweight real-time detection method MS-YOLO for coal mine safety helmet based on attention and reconfiguration features fusion is proposed. Firstly, to compress the size of the model and improve the detection speed without affecting the detection accuracy, a lightweight network MobileNeXt is adopted as the backbone network of the MS-YOLO algorithm. Then, the feature path fusion network PANet is reconstructed, and a new scale input, ULSAM-4 attention module and depth-separable convolution are further added to the network. Moreover, to accelerate the convergence rate of the model and improve the regression accuracy of the prediction frame, a new loss function CLIoU loss is also proposed. Furthermore, a helmet detection dataset for mine scene is established to be suitable for its special working environment. Through the experimental test on the standard dataset and the self-built dataset, the results show that the proposed MS-YOLO not only maintains high detection accuracy, but also has the advantages of good real-time performance and lightweight model.

Key words: object detection, lightweight network, coal mine helmet detection, loss function, attention mechanism