[1] ARIYO A A, ADEWUMI A O, AYO C K. Stock price prediction using the ARIMA model[C]//Proceedings of the 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, 2014: 106-112.
[2] ZHENG T, FARRISH J, KITTERLIN M. Performance trends of hotels and casino hotels through the recession: an ARIMA with intervention analysis of stock indices[J]. Journal of Hospitality Marketing & Management, 2016, 25(1): 49-68.
[3] VAPNIK V N. The nature of statistical learning theory[M]. New York: Springer, 1995.
[4] VAPNIK V N. Statistical learning theory[M]. New York: Wiley, 1998.
[5] BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167.
[6] CRISTIANINI N, SHAWE-TAYLOR J. An introduction to support vector machines and other kernel-based learning methods[M]. Cambridge: Cambridge University Press, 2000.
[7] CAO L J, TAY F. Varepsilon-descending support vector machines for financial time series forecasting[C]//Proceedings of the Second International Conference on Intelligent Data Engineering and Automated Learning, Data Mining, Financial Engineering, and Intelligent Agents, 2000: 274-279.
[8] KIM K J. Financial time series forecasting using support-vector machines[J]. Neurocomputing, 2003, 55(1): 307-319.
[9] TAY F, CAO L J. C-ascending support vector machines for financial time series forecasting[C]//Proceedings of the IEEE International Conference on Computational Intelligence for Financial Engineering, 2003: 847-861.
[10] KUMAR D, MEGHWANI S S, THAKUR M. Proximal support vector machine based hybrid prediction models for trend forecasting in financial markets[J]. Journal of Computational Science, 2016, 17: 1-13.
[11] CHEN Y, HAO Y. A feature weighted support vector machine and k-nearest neighbor algorithm for stock market indices prediction[J]. Expert Systems with Applications, 2017, 80: 340-355.
[12] HOSSAIN M F, ISLAM S, CHAKRABORTY P, et al. Predicting daily closing prices of selected shares of Dhaka stock exchange (DSE) using support vector machines[J]. Internet of Things and Cloud Computing, 2020, 8(4): 46-51.
[13] MAKALA D, LI Z. Prediction of gold price with ARIMA and SVM[J]. Journal of Physics Conference Series, 2021, 1767(1): 012022.
[14] SEDIGHI M, JAHANGIRNIA H, GHARAKHANI M, et al. A novel hybrid model for stock price forecasting based on metaheuristics and support vector machine[J]. Data, 2019, 4(2): 75.
[15] NTI I K, ADEKOYA A F, WEYORI B A. Efficient stock-market prediction using ensemble support vector machine[J]. Open Computer Science, 2020, 10(1): 154-163.
[16] JAYADEVA, KHEMCHANDANI R, CHANDRA S. Twin support vector machines for pattern classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5): 905-910.
[17] 白玉景. 基于q阶正交模糊孪生支持向量机的股票预测[J]. 知识经济, 2020(19): 59-62.
BAI Y J. Q-Rung orthopair fuzzy twin support vector machine and its application in stock prediction[J]. Knowledge Economy, 2020(19): 59-62.
[18] HAO P Y, KUNG C F, CHANG C Y, et al. Predicting stock price trends based on financial news articles and using a novel twin support vector machine with fuzzy hyperplane[J]. Applied Soft Computing, 2020: 106806.
[19] BELKIN M, NIYOGI P, SINDHWANI V. Manifold regulari-
zation: a geometric framework for learning from examples[J]. Journal of Machine Learning Research, 2006, 7(11): 2399-2434.
[20] DANIEL S Y, DEFENG W, NG W W Y, et al. Structured large margin machines: sensitive to data distributions[J]. Machine Learning, 2007, 68(2): 171-200.
[21] XUE H, CHEN S, YANG Q. Structural regularized support vector machine: a framework for structural large margin classifier[J]. IEEE Transactions on Neural Networks, 2011, 22(4): 573-587.
[22] QI Z, TIAN Y, SHI Y. Structural twin support vector machine for classification[J]. Knowledge-Based Systems, 2013, 43(2): 74-81.
[23] HUANG K, YANG H, KING I, et al. Maxi-min margin machine: learning large margin classifiers locally and globally[J]. IEEE Transactions on Neural Networks, 2008, 19(2): 260-272.
[24] PENG X J, WANG Y F, XU D. Structural twin parametric-margin support vector machine for binary classification[J]. Knowledge-Based Systems, 2013, 49: 63-72.
[25] CHU M, LIU L, YANG Y. Twin support vector machine with local structural information for pattern classification[J]. IEEE Access, 2018, 6: 64237-64249.
[26] WARD J. Hierarchical grouping to optimize an objective function[J]. Journal of the American Statistical Association, 1963, 58(301): 236-244.
[27] BHATTACHARYYA C, GRATE L R, JORDAN M I, et al. Robust sparse hyperplane classifiers: application to uncertain molecular profiling data[J]. Journal of Computational Biology, 2004, 11(6): 1073-1089.
[28] DUA D AND GRAFF C. UCI machine learning repository[D]. Irvine, CA: University of California. School of Information and Computer Sciences, 2017.
[29] SHAO Y H, ZHANG C H, WANG X B, et al. Improvements on twin support vector machines[J]. IEEE Transactions on Neural Networks, 2011, 22(6): 962-968.
[30] PENG X. TPMSVM: a novel twin parametric-margin support vector machine for pattern recognition[J]. Pattern Recognition, 2011, 44(10/11): 2678-2692.
[31] TZELEPIS C, MEZARIS V, PATRAS I. Linear maximum margin classifier for learning from uncertain data[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(12): 2948-2962.
[32] 马婷婷, 杨志霞, 叶俊佑. 鲁棒双参数化间隔支持向量机[J]. 计算机工程与应用, 2022, 58(9): 74-82.
MA T T, YANG Z X, YE J Y. Robust twin parametric-margin support vector machine for pattern classification[J]. Computer Engineering and Applications, 2022, 58(9): 74-82. |