计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (12): 249-259.DOI: 10.3778/j.issn.1002-8331.2112-0501
程孟菲,高淑萍
CHENG Mengfei, GAO Shuping
摘要: 股票市场不仅是上市公司的重要融资渠道,也是重要的投资市场,股票预测一直受到人们的关注。为了充分利用来自不同股票价格的信息,提高股票的预测效果,提出一种多尺度股票价格预测模型TL-EMD-LSTM-MA(TELM)。TELM模型通过经验模态分解将收盘价分解为多个时间尺度分量,不同时间尺度分量震荡频率不同,反映了不同的周期性信息;根据分量的震荡频率选择不同方法进行预测,高频分量利用深度迁移学习的方法训练堆叠LSTM,低频分量利用移动平均法进行预测;将所有分量的预测值相加作为收盘价的最终预测输出。通过深度迁移学习训练的堆叠LSTM,包含来自不同股票的信息,具备更多行业或市场的知识,能有效降低预测误差。利用移动平均法预测低频分量,更有效捕获股票的总体趋势。对中国A股市场内500支股票以及上证指数、深证成指等指数进行预测,结果表明,与其他模型相比,TELM预测误差最低,拟合优度最高。根据TELM预测的股票收盘价模拟股票交易过程,结果表明TELM投资风险低、收益高。