计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (20): 35-50.DOI: 10.3778/j.issn.1002-8331.2302-0083
李建辛,司冠南,田鹏新,安兆亮,周风余
出版日期:
2023-10-15
发布日期:
2023-10-15
LI Jianxin, SI Guannan, TIAN Pengxin, AN Zhaoliang, ZHOU Fengyu
Online:
2023-10-15
Published:
2023-10-15
摘要: 综述了多模态知识图谱技术在场景识别方面的应用。该技术将不同层次的3D专业知识结合到深度神经网络中,实现场景认知和知识表达。从知识的存储、获取和归纳三个层面,系统阐述了该技术的相关内容。贡献在于:全面综述了外置特征数据库快速构建3D场景图的现有技术;深入探讨了处理三维点云和视频的深度学习方法,并对此领域的未来研究方向做出分析。该研究对人工智能领域具有重要意义,为相关领域的进一步研究提供了有益的参考。为加强多模态知识图谱与其他人工智能技术(如自然语言处理、计算机视觉等)之间的融合,实现更加智能化、自动化、人性化的应用做出贡献。
李建辛, 司冠南, 田鹏新, 安兆亮, 周风余. 多模态知识图谱的3D场景识别与表达方法综述[J]. 计算机工程与应用, 2023, 59(20): 35-50.
LI Jianxin, SI Guannan, TIAN Pengxin, AN Zhaoliang, ZHOU Fengyu. Survey of 3D Scene Recognition and Representation Methods of Multimodal Knowledge[J]. Computer Engineering and Applications, 2023, 59(20): 35-50.
[1] OST J,MANNAN F,THUEREY N,et al.Neural scene graphs for dynamic scenes[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),Nashville,June 20-25,2021.Piscataway:IEEE,2021:2856-2865. [2] DUAN Y C,SHAO L X,HU G Z,et al.Specifying architecture of knowledge graph with data graph,information graph,knowledge graph and wisdom graph[C]//Proceedings of the 2017 IEEE 15th International Conference on Software Engineering Research,Management and Applications(SERA),London,Jun 7-9,2017.Piscataway:IEEE,2017:327-332. [3] KRISHNA R,ZHU Y K,GROTH O,et al.Visual genome:connecting language and vision using crowdsourced dense image annotations[J].International Journal of Computer Vision,2017,123(1):32-73. [4] HE Y Y,XIA N Q,LIU X S,et al.Improved locality affine-invariant feature matching[C]//Proceedings of the 2021 4th International Conference on Advanced Electronic Materials,Computers and Software Engineering(AEMCSE),Changsha,Mar 26-28,2021.Piscataway:IEEE,2021:832-836. [5] QIN X,LIU J,WANG Y L,et al.Natural language processing was effective in assisting rapid title and abstract screening when updating systematic reviews[J].Journal of Clinical Epidemiology,2021,133:121-129. [6] HERTZMAN R J,DESHPANDE P,LEARY S,et al.Visual genomics analysis studio as a tool to analyze multiomic data[J].Frontiers in Genetics,2021,12:642012. [7] WANG M,WANG H F,QI G L,et al.Richpedia:a large-scale,comprehensive multi-modal knowledge graph[J].Big Data Research,2020,22(10):100159. [8] GU J X,ZHAO H D,ZHE L,et al.Scene graph generation with external knowledge and image reconstruction[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),Long Beach,Jun 15-20,2019.Piscataway:IEEE,2019:1969-1978. [9] TIAN X,JI L,GAO H Y,et al.Scene graph generation method based on external information guidance and residual scrambling[J].Journal of Frontiers of Computer Science & Technology,2021,15(10):1958. [10] WICKRAMARACHCHI R,HENSON C,SHETH A.Knowledge-infused learning for entity prediction in driving scenes[J].Frontiers in Big Data,2021:98. [11] PU N,CHEN W,LIU Y,et al.Lifelong person re-identification via adaptive knowledge accumulation[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),Nashville,Jun 20-25,2021.Piscataway:IEEE,2021:7901-7910. [12] 杨旭华,王磊,叶蕾,等.基于节点相似性和网络嵌入的复杂网络社区发现算法[J].计算机科学,2022,49(3):121-128. YANG X H,WANG L,YE L,et al.Complex network community discovery algorithm based on node similarity and network embedding[J].Computer Science,2022,49(3):121-128. [13] ZHANG Z Q,CAI J Y,ZHANG Y D,et al.Learning hierarchy-aware knowledge graph embeddings for link prediction[C]//Proceedings of The Thirty-Fourth AAAI Conference on Artificial Intelligence,New York,Feb 7-12,2020.Palo Alto:AAAI,2020:3065-3072. [14] KUMAR A,SINGH S S S,SINGH K,et al.Link prediction techniques,applications,and performance:a survey[J].Physica A:Statistical Mechanics and Its Applications,2020,553:7897-7906. [15] SHEN J W,SHI K F,MA M G.Exploring the construction and application of spatial scene knowledge graphs considering topological relations[J].Transactions in GIS,2022,26(3):1531-1547. [16] WANG R Z,TANG D Y,DUAN N,et al.K-adapter:infusing knowledge into pre-trained models with adapters[J].arXiv:2002.01808,2020. [17] YANG A,WANG Q,LIU J,et al.Enhancing pre-trained language representations with rich knowledge for machine reading comprehension[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,Florence,Jul 28-Aug 2,2019.Stroudsburg:ACL,2019:2346-2357. [18] DEVLIN J,CHANG M W,LEE K,et al.BERT:pre-training of deep bidirectional transformers for language understanding[J].arXiv:1810.04805,2018. [19] YADATI N,DAYANIDHI R S,VAISHNAVI S,et al.Knowledge base question answering through recursive hypergraphs[C]//Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics,Apr 19-23,2021.Stroudsburg:ACL,2021:448-454. [20] PETERS M E,NEUMANN M,LOGAN IV R L,et al.Knowledge enhanced contextual word representations[J].arXiv:1909.04164,2019. [21] SUCHANEK F M,KASNECI G,WEIKUM G.Yago:a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web,Banff Alberta,May 8-12,2007.New York:ACM,2007:697-706. [22] BOLLACKER K,EVANS C,PARITOSH P,et al.Freebase:a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data,Vancouver,Jun 9-12,2008.New York:ACM,2008:1247-1250. [23] FORMICA A,TAGLINO F.Semantic relatedness in DBpedia:a comparative and experimental assessment[J].Information Sciences,2023,621:474-505. [24] CARLSON A,BETTERIDGE J,KISIEL B,et al.Toward an architecture for never-ending language learning[C]//Proceedings of Twenty-Fourth AAAI Conference on Artificial Intelligence,Atlanta,Jul 11-15,2010.Palo Alto:AAAI,2010:1306-1313. [25] NAYYERI M,VAHDATI S,LEHMANN J,et al.Soft marginal transe for scholarly knowledge graph completion[J].arXiv:1904.12211,2019. [26] WANG Z,ZHANG J W,FENG J L,et al.Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence,Québec,Jul 27-31,2014.Palo Alto:AAAI,2014. [27] HUANG W H,LI G,JIN Z.Improved knowledge base completion by the path-augmented TransR model[C]//Proceedings of the Knowledge Science,Engineering and Management:10th International Conference,KSEM 2017,Melbourne,Aug 19-20,2017.Berlin,Heidelberg:Springer,2017:149-159. [28] ROSSO P,YANG D Q,CUDRé-MAUROUX P.Beyond triplets:hyper-relational knowledge graph embedding for link prediction[C]//Proceedings of the Web Conference 2020,Taipei,Apr 20-24,2020.New York:ACM,2020:1885-1896. [29] WANG B Y,ZHAO D H,LIOMA C,et al.Encoding word order in complex embeddings[J].arXiv:1912.12333,2019. [30] BORDES A,WESTON J,COLLOBERT R,et al.Learning structured embeddings of knowledge bases[C]//Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence,San Francisco,Aug 7-11,2011.Palo Alto:AAAI,2011:301-306. [31] BORDES A,GLOROT X,WESTON J,et al.A semantic matching energy function for learning with multi-relational data:application to word-sense disambiguation[J].Machine Learning,2014,94:233-259. [32] JI K X,HUI B,LUO G C.Graph attention networks with local structure awareness for knowledge graph completion[J].IEEE Access,2020,8:224860-224870. [33] TAO Y,LI Y,WU Z H.Temporal link prediction via reinforcement learning[C]//2021 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP),Toronto,Jun 6-11,2021.Piscataway:IEEE,2021:3470-3474. [34] MOON C,JONES P,SAMATOVA N F.Learning entity type embeddings for knowledge graph completion[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management,Singapore,Nov 6-10,2017.New York:ACM,2017:2215-2218. [35] CAI B,XIANG Y,GAO L X,et al.From wide to deep:dimension lifting network for parameter-efficient knowledge graph embedding[J].arXiv:2303.12816,2023. [36] DAS P,KARNAM S K,PANDA A,et al.Diversity matters:robustness of bias measurements in Wikidata[J].arXiv:2302.14027,2023. [37] AL-MOSLMI T,OCA?A M G,OPDAHL A L,et al.Named entity extraction for knowledge graphs:a literature overview[J].IEEE Access,2020,8:32862-32881. [38] SHANG C,TANG Y,HUANG J,et al.End-to-end structure-aware convolutional networks for knowledge base completion[C]//Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence,Honolulu,Jan 27-Feb 1,2019.Palo Alto:AAAI,2019:3060-3067. [39] 邬焜,邬天启.人类知识探索中的上帝情怀[J].系统科学学报,2022,30(4):1-7. WU K,WU T Q.The God complex in the search for human knowledge[J].Journal of Systems Science,2022,30(4):1-7. [40] WANG Q,MAO Z D,WANG B,et al.Knowledge graph embedding:a survey of approaches and applications[J].IEEE Transactions on Knowledge and Data Engineering,2017,29(12):2724-2743. [41] BALA?EVI? I,ALLEN C,HOSPEDALES T M.Tucker:tensor factorization for knowledge graph completion[J].arXiv:1901.09590,2019. [42] DETTMERS T,MINERVINI P,STENETORP P,et al.Convolutional 2D knowledge graph embeddings[C]//Proceedings of the AAAI Conference on Artificial Intelligence,New Orleans,Feb 2-7,2018.Palo Alto:AAAI,2018. [43] NGUYEN D Q,VU T,NGUYEN T D,et al.A capsule network-based embedding model for knowledge graph completion and search personalization[J].arXiv:1808.04122, 2018. [44] VASHISHTH S,SANYAL S,NITIN V,et al.Interacte:improving convolution-based knowledge graph embeddings by increasing feature interactions[C]//Proceedings of the AAAI Conference on Artificial Intelligence,New York,Feb 7-12,2020.Palo Alto:AAAI,2020:3009-3016. [45] SUN Z Q,DENG Z H,NIE J Y,et al.Rotate:knowledge graph embedding by relational rotation in complex space[J].arXiv:1902.10197,2019. [46] SCHLICHTKRULL M,KIPF T N,BLOEM P,et al.Modeling relational data with graph convolutional networks[C]//Proceedings of the Semantic Web:15th International Conference,ESWC 2018,Heraklion,Crete,Greece,Jun 3-7,2018.Berlin,Heidelberg:Springer,2018:593-607. [47] VASHISHTH S,SANYAL S,NITIN V,et al.Composition-based multi-relational graph convolutional networks[J].arXiv:1911.03082,2019. [48] KIM A,O?EP A,LEAL-TAIXé L.Eagermot:3D multi-object tracking via sensor fusion[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation(ICRA),Xi’an,May 30-June 5,2021.Piscataway:IEEE,2021:11315-11321. [49] ARNOLD E,AL-JARRAH O Y,DIANATI M,et al.A survey on 3D object detection methods for autonomous driving applications[J].IEEE Transactions on Intelligent Transportation Systems,2019,20(10):3782-3795. [50] XU Q G,SUN X D,WU C Y,et al.Grid-GCN for fast and scalable point cloud learning[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),Seattle,June 13-19,2020.Piscataway:IEEE,2020:5661-5670. [51] GUO Y L,WANG H Y,HU Q Y,et al.Deep learning for 3D point clouds:a survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,43(12):4338-4364. [52] ZUO X X,MERRILL N,LI W,et al.CodeVIO:visual-inertial odometry with learned optimizable dense depth[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation(ICRA),Xi’an,May 30-June 5,2021.Piscataway:IEEE,2021:14382-14388. [53] YU Q,YANG C Z,FAN H H,et al.Latent-MVCNN:3D shape recognition using multiple views from pre-defined or random viewpoints[J].Neural Processing Letters,2020,52:581-602. [54] PAN Z Z,ZHUANG B H,LIU J,et al.Scalable vision transformers with hierarchical pooling[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision(ICCV),Montreal,Oct 10-17,2021:377-386. [55] MOSTAFAEI H,MIRI S M,SCHMID S.ReactNet:self-adjusting architecture for networked systems[C]//Proceedings of the 17th International Conference on Emerging Networking EXperiments and Technologies,Virtual Event Germany,Dec 7-10,2021.New York,ACM,2021:473-474. [56] FRANKLE J,CARBIN M.The lottery ticket hypothesis:finding sparse,trainable neural networks[J].arXiv:1803. 03635,2018. [57] WU Z H,PAN S R,CHEN F W,et al.A comprehensive survey on graph neural networks[J].arXiv:1901.00596,2019. [58] RODRIGUEZ D,BEHNKE S.DeepWalk:omnidirectional bipedal gait by deep reinforcement learning[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation(ICRA),Xi’an,May 30-June 05,2021.Piscataway:IEEE,2021:3033-3039. [59] GROHE M.word2vec,node2vec,graph2vec,x2vec:towards a theory of vector embeddings of structured data[C]//Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,Portland,June 14-19,2020.New York:ACM,2020:1-16. [60] WEI X,YU R X,SUN J.View-GCN:view-based graph convolutional network for 3d shape analysis[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),Seattle,June 13-19,2020.Piscataway:IEEE,2020:1850-1859. [61] WU H,LIU Q,LIU X D.A review on deep learning approaches to image classification and object segmentation[J].Computers,Materials and Continua,2019,58(2):575-597. [62] ZELLER N,QUINT F,STILLA U.Scale-awareness of light field camera based visual odometry[C]//Proceedings of the European Conference on Computer Vision(ECCV),Munich,Sep 8-14,2018.Berlin,Heidelberg:Springer,2018:715-730. [63] KULKARNI S C,REGE P P.Pixel level fusion techniques for SAR and optical images:a review-ScienceDirect[J].Information Fusion,2020,59:13-29. [64] LIU Y,CHEN X,WANG Z F,et al.Deep learning for pixel-level image fusion:recent advances and future prospects[J].Information Fusion,2018,42:158-173. [65] ABUALIGAH L,DIABAT A,SUMARI P,et al.A novel evolutionary arithmetic optimization algorithm for multilevel thresholding segmentation of covid-19 CT images[J].Processes,2021,9(7):1155. [66] ARASLANOV N,ROTH S.Single-stage semantic segmentation from image labels[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),Seattle,June 13-19,2020.Piscataway:IEEE,2020:4253-4262. [67] MITTAL M,VERMA A,KAUR I,et al.An efficient edge detection approach to provide better edge connectivity for image analysis[J].IEEE Access,2019,7:33240-33255. [68] MIN E,GUO X F,LIU Q,et al.A survey of clustering with deep learning:from the perspective of network architecture[J].IEEE Access,2018,6:39501-39514. [69] ALJALBOUT E,GOLKOV V,SIDDIQUI Y,et al.Clustering with deep learning:taxonomy and new methods[J].arXiv:1801.07648,2018. [70] WILLEMINK M J,KOSZEK W A,HARDELL C,et al.Preparing medical imaging data for machine learning[J].Radiology,2020,295(1):4-15. [71] CHAVE J,DAVIES S J,PHILLIPS O L,et al.Ground data are essential for biomass remote sensing missions[J].Surveys in Geophysics,2019,40:863-880. [72] CHONG Y W,NIE C C,TAO Y L,et al.HCNet:hierarchical context network for semantic segmentation[J].IEEE Access,2020,8:179213-179223. [73] XU L,JING W P,SONG H B,et al.High-resolution remote sensing image change detection combined with pixel-level and object-level[J].IEEE Access,2019,7:78909-78918. [74] ZHAO Z Q,ZHENG P,XU S T,et al.Object detection with deep learning:a review[J].IEEE Transactions on Neural Networks and Learning Systems,2019,30(11):3212-3232. [75] DOLZ J,GOPINATH K,YUAN J,et al.HyperDense-Net:a hyper-densely connected CNN for multi-modal image segmentation[J].IEEE Transactions on Medical Imaging,2018,38(5):1116-1126. [76] WEN C,ZHANG Y D,LI Z W,et al.Pixel2mesh++:multi-view 3D mesh generation via deformation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision(ICCV),Seoul,Oct 27-Nov 2,2019.New York:IEEE Communications Society,2019:1042-1051. [77] KATO H,USHIKU Y,HARADA T.Neural 3D mesh renderer[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake,June 18-23,2018.Piscataway:IEEE,2018:3907-3916. [78] 翟正利,梁振明,周炜,等.变分自编码器模型综述[J].计算机工程与应用,2019,55(3):1-9. ZHAI Z L,LIANG Z M,ZHOU W,et al.Research overview of variational auto-encoders models[J].Computer Engineering and Applications,2019,55(3):1-9. [79] YI X,WALIA E,BABYN P.Generative adversarial network in medical imaging:a review[J].Medical Image Analysis,2019,58:101552. [80] 王昌硕,王含,宁欣,等.基于局部区域动态覆盖的3D点云分类方法[J].软件学报,2023,34(4):1962-1976. WANG C S,WANG H,NING X,et al.3D point cloud classification method based on dynamic coverage of local area[J].Journal of Software,2023,34(4):1962-1976. [81] HAN S C,LIU B B,CABEZAS R,et al.MEgATrack:monochrome egocentric articulated hand-tracking for virtual reality[J].ACM Transactions on Graphics(ToG),2020,39(4):1-13. [82] 南文倩,郭斌,陈荟慧,等.基于跨空间多元交互的群智感知动态激励模型[J].计算机学报,2015,38(12):2412-2425. NAN W Q,GUO B,CHEN H H,et al.A dynamic incentive model for group wisdom perception based on cross-space multivariate interaction[J].Chinese Journal of Computers,2015,38(12):2412-2425. [83] 刘迪,贾金露,赵玉卿,等.基于深度学习的图像去噪方法研究综述[J].计算机工程与应用,2021,57(7):1-13. LIU D,JIA J L,ZHAO Y Q,et al.Overview of image denoising methods based on deep learning[J].Computer Engineering and Applications,2021,57(7):1-13. [84] JARITZ M,GU J Y,SU H.Multi-view pointnet for 3D scene understanding[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision(ICCV),Seoul,Oct 27-28,2019.New York:IEEE Communications Society,2019:3995-4002. [85] QI C R,SU H,MO K C,et al.Pointnet:deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Honolulu,July 21-26,2017.Piscataway:IEEE,2017:652-660. [86] QI C R,YI L,SU H,et al.Pointnet++:deep hierarchical feature learning on point sets in a metric space[C]//Advances in Neural Information Processing Systems,2017. [87] KU J,MOZIFIAN M,LEE J,et al.Joint 3D proposal generation and object detection from view aggregation[C]//Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS),Madrid,Oct 1-5,2018,Piscataway:IEEE,2018:1-8. [88] LIANG M,YANG B,CHEN Y,et al.Multi-task multi-sensor fusion for 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),Seoul,Oct 27-Nov 2,2019.New York:IEEE Communications Society,2019:7345-7353. [89] QI L,KUEN J,WANG Y,et al.Open world entity segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(7):8743-8756. [90] WANG W Y,FEISZLI M,WANG H,et al.Unidentified video objects:a benchmark for dense,open-world segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision(ICCV),Montreal,Oct 11-17,2021.New York:IEEE Communications Society,2021:10776-10785. [91] BEAR D,FAN C,MROWCA D,et al.Learning physical graph representations from visual scenes[C]//Advances in Neural Information Processing Systems,2020:6027-6039. [92] RADFAR M,BARNWAL R,SWAMINATHAN R V,et al.ConvRNN-T:convolutional augmented recurrent neural network transducers for streaming speech recognition[J].arXiv:2209.14868,2022. [93] KONG X,YANG X M,ZHAI G Y,et al.Semantic graph based place recognition for 3d point clouds[C]//Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS),Las Vegas,October 25-29,2020:8216-8223. [94] LIU Z,SUO C Z,ZHOU S B,et al.SeqLPD:sequence matching enhanced loop-closure detection based on large-scale point cloud description for self-driving vehicles[C]//Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS),Macao,Nov 3-8,2019.Piscataway:IEEE,2019:1218-1223. [95] LIU Z,ZHOU S B,SUO C Z,et al.LPD-Net:3D point cloud learning for large-scale place recognition and environment analysis[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision(ICCV),Seoul,Oct 27-Nov 2,2019.New York:IEEE Communications Society,2019:2831-2840. [96] XIAO H,CHEN Y D,SHI X D.Knowledge graph embedding based on multi-view clustering framework[J].IEEE Transactions on Knowledge and Data Engineering,2019,33(2):585-596. [97] CHENG G,XIE X X,HAN J W,et al.Remote sensing image scene classification meets deep learning:challenges,methods,benchmarks,and opportunities[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020,13:3735-3756. [98] PAPARRIZOS J,EDIAN I,LIU C W,et al.Fast adaptive similarity search through variance-aware quantization[C]//Proceedings of the 2022 IEEE 38th International Conference on Data Engineering,Lumpur,May 9-12,2022.Piscataway:IEEE 2022:2969-2983. [99] BRAUN J J,MEYER P M,MEYER D R.Sparing of a brightness habit in rats following visual decortication[J].Journal of Comparative and Physiological Psychology,1966,61(1):79. [100] ADJALI O,BESAN?ON R,FERRET O,et al.Multimodal entity linking for tweets[C]//Proceedings of the Advances in Information Retrieval:42nd European Conference on IR Research,Lisbon,April 14-17,2020.Berlin,Heidelberg:Springer,2020:463-478. [101] ZHAO W T,HU Y,WANG H D,et al.Boosting entity-aware image captioning with multi-modal knowledge graph[J].arXiv:2107.11970,2021. [102] XING Y R,SHI Z,MENG Z,et al.KM-BART:knowledge enhanced multimodal BART for visual commonsense generation[J].arXiv:2101.00419,2021. [103] LONG Y H,WU J Y,LU B,et al.Relational graph learning on visual and kinematics embeddings for accurate gesture recognition in robotic surgery[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation(ICRA),Xi’an,May 30-June 5,2021.Piscataway:IEEE,2021:13346-13353. [104] KAN X,CUI H J,YANG C.Zero-shot scene graph relation prediction through commonsense knowledge integration[C]//Proceedings of the Machine Learning and Knowledge Discovery in Databases,Bilbao,Spain,Sep 13-17,2021,Berlin:Springer,2021:466-482. [105] HONG Y C,RODRIGUEZ C,QI Y K,et al.Language and visual entity relationship graph for agent navigation[C]//Advances in Neural Information Processing Systems,2020:7685-7696. |
[1] | 苟园旻, 闫建伟, 张富贵, 孙成宇, 徐勇. 水果采摘机器人视觉系统与机械手研究进展[J]. 计算机工程与应用, 2023, 59(9): 13-26. |
[2] | 陈吉尚, 哈里旦木·阿布都克里木, 梁蕴泽, 阿布都克力木·阿布力孜, 米克拉依·艾山, 郭文强. 深度学习在符号音乐生成中的应用研究综述[J]. 计算机工程与应用, 2023, 59(9): 27-45. |
[3] | 刘华玲, 陈尚辉, 乔梁, 刘雅欣. 多模态混合注意力机制的虚假新闻检测研究[J]. 计算机工程与应用, 2023, 59(9): 95-103. |
[4] | 孙爱晶, 王国庆. 邻居关系感知的图卷积网络推荐模型[J]. 计算机工程与应用, 2023, 59(9): 112-122. |
[5] | 蔡正奕, 赵杰煜, 朱峰. 融合图像特征的单阶段点云目标检测[J]. 计算机工程与应用, 2023, 59(9): 140-149. |
[6] | 李文举, 储王慧, 崔柳, 苏攀, 张干. 结合图采样和图注意力的3D目标检测方法[J]. 计算机工程与应用, 2023, 59(9): 237-244. |
[7] | 邱凌, 张安思, 张羽, 李少波, 李传江, 杨磊. 面向无人机故障诊断的知识图谱构建应用方法[J]. 计算机工程与应用, 2023, 59(9): 280-288. |
[8] | 王昌海, 梁辉, 王博, 崔晓旭. 基于指数成分股关联的图卷积指数走势预测[J]. 计算机工程与应用, 2023, 59(9): 319-328. |
[9] | 张婷, 张兴忠, 王慧民, 杨罡, 王大伟. 基于图神经网络的变电站场景三维目标检测[J]. 计算机工程与应用, 2023, 59(9): 329-336. |
[10] | 杨崇洛, 生龙, 魏忠诚, 王巍. 新冠文本实体关系抽取及数据集构建方法研究[J]. 计算机工程与应用, 2023, 59(8): 97-104. |
[11] | 陆林, 季繁繁, 袁晓彤. 随机初始化神经网络剪枝的稀疏二值规划方法[J]. 计算机工程与应用, 2023, 59(8): 138-147. |
[12] | 兰红, 陈浩, 张蒲芬. 集图卷积和三维方向卷积的点云分类分割模型[J]. 计算机工程与应用, 2023, 59(8): 182-191. |
[13] | 崔少国, 独潇, 杨泽田. 多注意力机制融合低高阶特征的神经推荐算法[J]. 计算机工程与应用, 2023, 59(8): 192-199. |
[14] | 蒋玉英, 陈心雨, 李广明, 王飞, 葛宏义. 图神经网络及其在图像处理领域的研究进展[J]. 计算机工程与应用, 2023, 59(7): 15-30. |
[15] | 邱云飞, 邢浩然, 李刚. 矿井建设知识图谱构建研究综述[J]. 计算机工程与应用, 2023, 59(7): 64-79. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||