计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (20): 13-34.DOI: 10.3778/j.issn.1002-8331.2210-0327
韩致远,姜玺军,王晨,刘瑞军
出版日期:
2023-10-15
发布日期:
2023-10-15
HAN Zhiyuan, JIANG Xijun, WANG Chen, LIU Ruijun
Online:
2023-10-15
Published:
2023-10-15
摘要: 近年来,随着国民医疗水平的不断提高,医疗影像设备在基层医院的不断普及,医学影像数据已经成为医生做出病理诊断的重要依据,利用计算机技术处理口腔医学影像也引起了研究人员的兴趣。设计相关算法自动分割牙齿图像中的感兴趣区域,对于辅助口腔医生诊断,提升阅片效率,都有着重要的临床应用价值,同时对缓解手工分割工作强度也有重要研究意义。通过对近十年牙齿X线片分割方法进行回顾,将牙齿图像分割方法分为基于手工特征的方法和基于深度学习的方法。对这两大类方法的研究现状进行了梳理和阐述;总结了部分研究的使用数据集和常用的评价指标,并比较了各类方法在相关数据集上的实验结果;分析了牙齿图像分割领域目前存在的问题和未来可研究的方向。
韩致远, 姜玺军, 王晨, 刘瑞军. 牙齿X线片的图像分割方法综述[J]. 计算机工程与应用, 2023, 59(20): 13-34.
HAN Zhiyuan, JIANG Xijun, WANG Chen, LIU Ruijun. Review of Image Segmentation Methods for Dental X-Ray Radiographs[J]. Computer Engineering and Applications, 2023, 59(20): 13-34.
[1] KUMAR R,KHAMBETE N,PRIYA E.Extraoral periapical radiography:an alternative approach to intraoral periapical radiography[J].Imaging Science in Dentistry,2011,41(4):161. [2] LI S,FEVENS T,KRZYZAK A,et al.An automatic variational level set segmentation framework for computer aided dental X-rays analysis in clinical environments[J].Computerized Medical Imaging and Graphics,2006,30(2):65-74. [3] 张晓娟,李忠科,吕培军,等.基于牙颌模型的散乱点云配准技术研究[J].计算机工程与应用,2012,48(19):16-19. ZHANG X J,LI Z K,LV P J,et al.Registration algorithms of dental cast based on unorganized 3D point-cloud[J].Computer Engineering and Applications,2012,48(19):16-19. [4] PARK K J,KWAK K C.A Trends analysis of dental image processing[C]//2019 17th International Conference on ICT and Knowledge Engineering(ICT&KE),2019:1-5. [5] 汪葛,王远军.基于水平集的牙齿CT图像分割技术[J].计算机应用,2016,36(3):827-832. WANG G,WANG Y J.Development of teeth segmentation from computed tomography images using level set method[J].Journal of Computer Applications,2016,36(3):827-832. [6] JUNG U K,HAK G K,YONG M R.Iterative deep convolutional encoder-decoder network for medical image segmentation[C]//Annu Int Conf IEEE Eng Med Biol Soc,2017:685-688. [7] RAD A E,RAHIM M S M,REHMAN A,et al.Evaluation of current dental radiographs segmentation approaches in computer-aided applications[J].IETE Technical Review,2013,30(3):210-222. [8] LI S,FEVENS T,KRZYZAK A,et al.Semi-automatic computer aided lesion detection in dental X-rays using variational level set[J].Pattern Recognition,2007,40(10):2861-2873. [9] SAID E H,NASSAR D E M,FAHMY G,et al.Teeth segmentation in digitized dental X-ray films using mathematical morphology[J].IEEE Transactions on Information Forensics and Security,2006,1(2):178-189. [10] SEZGIN M,SANKUR B L.Survey over image thresholding techniques and quantitative performance evaluation[J].Journal of Electronic Imaging,2004,13(1):146-168. [11] 江贵平,秦文健,周寿军,等.医学图像分割及其发展现状[J].计算机学报,2015,38(6):1222-1242. JIANG G P,QIN W J,ZHOU S J,et al.State-of-the-art in medical image segmentation[J].Chinese Journal of Computers,2015,38(6):1222-1242. [12] GARCIA A,ORTS S,OPREA S,et al.A review on deep learning techniques applied to semantic segmentation[J].Expert Systems with Applications,2018,70:41-65. [13] RONNEBERGER O,FISCHER P,BROX T,et al.U-Net:convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-assisted Intervention,2015:234-241. [14] SILVA G,OLIVEIRA L,PITHON M.Automatic segmenting teeth in X-ray images:trends,a novel data set,benchmarking and future perspectives[J].Expert Systems with Applications,2018,107:15-31. [15] JADER G,FONTINELI J,RUIZ M,et al.Deep instance segmentation of teeth in panoramic X-ray images[C]//2018 31st SIBGRAPI Conference on Graphics,Patterns and Images(SIBGRAPI),2018:400-407. [16] KUMAR A,BHADAURIA H S,SINGH A.Descriptive analysis of dental X-ray images using various practical methods:a review[J].PeerJ Computer Science,2021,7:e620. [17] MAJANGA V,VIRIRI S.A survey of dental caries segmentation and detection techniques[J].The Scientific World Journal,2022:8415705. [18] CHIH H D,MDS C H P.Computer-assisted orientation of dental periapical radiographs to the occlusal plane[J].Oral Surgery,Oral Medicine,Oral Pathology,Oral Radiology,and Endodontology,2008,105(5):649-653. [19] RAZALI M R M,AHMAD N S,ZAKI Z M,et al.Region of adaptive threshold segmentation between mean,median and otsu threshold for dental age assessment[C]//International Conference on Computer,Communications,and Control Technology(I4CT),2014:353-356. [20] AJAZ A,KATHIRVELU D.Dental biometrics:computer aided human identification system using the dental panoramic radiographs[C]//2013 International Conference on Communication and Signal Processing,2013:717-721. [21] DIGHE S C,SHRIRAM R.Dental biometrics for human identification based on dental work and image properties in periapical radiographs[C]//TENCON 2012 IEEE Region 10 Conference,2012:1-6. [22] BRUELLMAN D,SANDER S,SCHMIDTMANN I.The design of a fast Fourier filter for enhancing diagnostically relevant structures-endodontic files[J].Computers in Biology and Medicine,2016,72:212-217. [23] YUSRA Y A,MUSBAH J A.An efficient segmentation algorithm for panoramic dental images[J].Procedia Computer Science,2015,65:718-725. [24] TIKHE S V,NAIK A M,BHIDE S D,et al.Algorithm to identify enamel caries and interproximal caries using dental digital radiographs[C]//International Conference on Advanced Computing(IACC),2016:225-228. [25] LIN P L,HUANG P Y,HUANG P W,et al.Teeth segmentation of dental periapical radiographs based on local singularity analysis[J].Computer Methods and Programs in Biomedicine,2014,113:433-445. [26] LIN P L,HUANG P W,HUANG P Y,et al.Alveolar bone-loss area localization in periodontitis radiographs based on threshold segmentation with a hybrid feature fused of intensity and the H-value of fractional Brownian motion model[J].Computer Methods and Programs in Biomedicine,2015,121(3):117-126. [27] AL-SHERIF N,GUO G,AMMAR H H.A new approach to teeth segmentation[C]//2012 IEEE International Symposium on Multimedia,2012:145-148. [28] CAMERIERE R,DE L S,EGIDI N,et al.Automatic age estimation in adults by analysis of canine pulp/tooth ratio:preliminary results[J].Journal of Forensic Radiology and Imaging,2015,3(1):61-66. [29] VIJAY G,CHITRODA P,KATTI G,et al.Prediction of osteoporosis using dental radiographs and age in females[J].J Midlife Health,2015,6(2):70-75. [30] MOHAMED M R,AHMAD N S,MOHD Z,et al.Region of adaptive threshold segmentation between mean,median and otsu threshold for dental age assessment[C]//International Conference on Computer,Communications,and Control Technology(I4CT),2014:353-356. [31] CHING W W,CHENG T H,LEE J H,et al.A benchmark for comparison of dental radiography analysis algorithms[J].Medical Image Analysis,2016,31:63-76. [32] LIN P L,LAI Y H,HUANG P W.An effective classification and numbering system for dental bitewing radiographs using teeth region and contour information[J].Pattern Recognition,2010,43(4):1380-1392. [33] LIN P L,HUANG P Y,HUANG P W.An effective teeth segmentation method for dental periapical radiographs based on local singularity[C]//International Conference on System Science and Engineering(ICSSE),2013:407-411. [34] INDRASWARI R,ARIFIN A Z,NAVASTARA D A,et al.Teeth segmentation on dental panoramic radiographs using decimation-free directional filter bank thresholding and multistage adaptive thresholding[C]//International Conference on Information & Communication Technology and Systems,2015:49-54. [35] SETIANINGRUM A H,RINI A S,HAKIEM N.Image segmentation using the Otsu method in dental X-rays[C]//Second International Conference on Informatics and Computing(ICIC),2017:1-6. [36] MAHDI F P,KOBASHI S.Quantum particle swarm optimization for multilevel thresholding-based image segmentation on dental X-ray images[C]//Joint 10th International Conference on Soft Computing and Intelligent Systems(SCIS) and 19th International Symposium on Advanced Intelligent Systems(ISIS),2018:1148-1153. [37] DEVI R K,DAWOOD M S,MURUGAN R,et al.Fuzzy based regional thresholding for cyst segmentation in dental radiographs[C]//International Conference on Intelligent Computing and Control Systems(ICICCS),2020:544-549. [38] KUMARI A R,RAO N S,REDDY P R.Heuristically modified fusion-based hybrid algorithm for enhanced dental caries segmentation[C]//International Conference on Advances in Computing,Communication and Applied Informatics(ACCAI),2022:1-7. [39] WANG L,LI J,GE Z,et al.CBCT image based segmentation method for tooth pulp cavity region extraction[J].Dentomaxillofac Radiol,2019,48:20180236. [40] SUBRAMANYAM R B,PRASAD K P,ANURADHA B.Different image segmentation techniques for dental image extraction[J].Int Journal of Engineering Research and Applications,2014,4(7):173-177. [41] 黄旭,张世义,李军.图像分割技术研究综述[J].装备机械,2021(2):6-9. HANG X,ZHANG S Y,LI J.Study overview of image segmentation technology[J].The Magazine on Equipment Machinery,2021(2):6-9. [42] MODI C K,DESAI N P.A simple and novel algorithm for automatic selection of ROI for dental radiograph segmentation[C]//Canadian Conference on Electrical and Computer Engineering(CCECE),2011. [43] LURIE A,TOSONI G M,TSIMIKAS J,et al.Recursive hierarchic segmentation analysis of bone mineral density changes on digital panoramic images[J].Oral Surgery,Oral Medicine,Oral Pathology and Oral Radiology,2012,113(4):549-558. [44] INDRASWARI R,KURITA T,ARIFIN,et al.3D Region merging for segmentation of teeth on cone-beam computed tomography images[C]//Joint 10th International Conference on Soft Computing and Intelligent Systems(SCIS) and 19th International Symposium on Advanced Intelligent Systems(ISIS),2018:341-345. [45] KIM J,LEE S.Extracting major lines by recruiting zero-threshold Canny edge links along Sobel highlights[J].IEEE Signal Processing Letters,2015,22(10):1689-1692. [46] RAZALI M R M,HASSAN R,AHMAD N S,et al.Sobel and Canny edges segmentations for the dental age assessment[C]//International Conference on Computer Assisted System in Health,2014:62-66. [47] GRAFOVA L,KASPAROVA M,KAKAWAND S,et al.Study of edge detection task in dental panoramic radiographs[J].Dentomaxillofac Radiol,2013,42(7):20120391. [48] LIN P L,LAI Y H,HUANG P W.Dental biometrics:human identification based on teeth and dental works in bitewing radiographs[J].Pattern Recognition,2012,45(3):934-946. [49] PATIL S,KULKARNI V,BHISE A.Algorithmic analysis for dental caries detection using an adaptive neural network architecture[J].Heliyon,2019,5(5):e01579. [50] EHSANI R A,MOHD R M S,NOROZI A.Digital dental X-ray image segmentation and feature extraction[J].Telkomnika Indonesian Journal of Electrical Engineering,2013,11(6):3109-3114. [51] 杨建功,汪西莉.一种结合图割与双水平集的图像分割方法[J].计算机工程与应用,2012,48(3):195-197. YANG J G,WANG X L.Image segmentation approach based on graph cuts and dual level set method[J].Computer Engineering and Applications,2012,48(3):195-197. [52] 郑伟,陈彦江.基于局部区域信息的水平集医学图像分割方法[J].计算机工程与应用,2010,46(31):209-211. ZHENG W,CHEN Y J.Approach of novel level set for medical image segmentation based on local region information[J].Computer Engineering and Applications,2010,46(31):209-211. [53] GAO H,CHAE O.Individual tooth segmentation from CT images using level set method with shape and intensity prior[J].Pattern Recognition,2010,43(7):2407-2417. [54] YAU H T,YANG T J,CHEN Y C.Tooth model reconstruction based upon data fusion for orthodontic treatment simulation[J].Computers in Biology and Medicine,2014;48:8-16. [55] JI D X,ONGA S H,FOONG K W C.A level-set based approach for anterior teeth segmentation in cone beam computed tomography images[J].Computers in Biology and Medicine,2014,50:116-128. [56] GAN Y,XIA Z,XIONG,J et al.Toward accurate tooth segmentation from computed tomography images using a hybrid level set model[J].Medical Physics,2015,42(1):14-27. [57] ZHONG L,ZHOU Y F,ZHANG X F,et al.Image segmentation by level set evolution with region consistency constraint[J].Applied Mathematics,2017,32(4):422-442. [58] KUMAR A,BHADAURIA H S,KUMAR N.Fuzzy clustering with level set segmentation for detection of dental restoration area[C]//International Conference on Advances in Computing and Communication Engineering(ICACCE),2018:322-326. [59] WANG Y J,LIU S W,WANG G,et al.Accurate tooth segmentation with improved hybrid active contour model[J].Physics in Medicine & Biology,2018,64(1):015012. [60] 石沁祎,闫方,杨阳,等.基于水平集的牙齿牙槽骨图像分割[J].波谱学杂志,2021,38(2):182-193. SHI Q W,YAN F,YANG Y,et al.Image segmentation of tooth and alveolar bone with the level set model[J].Chinese Journal of Magnetic Resonance,2021,38(2):182-193. [61] FERNANDEZ K,CHANG C.Teeth/palate and interdental segmentation using artificial neural networks[C]//IAPR Workshop on Artificial Neural Networks in Pattern Recognition,2012:175-185. [62] MAGHSOUDI R,BAGHERI A,MAGHSOUDI M T.Diagnosis prediction of lichen planus,leukoplakia,and oral squamous cell carcinoma by using an intelligent system based on artificial neural networks[J].Journal of Dentomaxillofacial,2013,2(2):1-8. [63] JAVID A,RASHID U,KHATTAK A S.Marking early lesions in labial colored dental images using a transfer learning approach[C]//International Multitopic Conference(INMIC),2020:1-5. [64] LEO L M,REDDY T K.Learning compact and discriminative hybrid neural network for dental caries classification[J].Microprocessors and Microsystems,2021,82:103836. [65] DELEAT-BESSON R,LE C,TURKESTANI N,et al.Automatic segmentation of dental root canal and merging with crown shape[C]//Annual International Conference of the IEEE Engineering in Medicine & Biology Society(EMBC),2021:2948-2951. [66] PUSHPARAJ V,GURUNATHAN U,ARUMUGAM B,et al.An effective numbering and classification system for dental panoramic radiographs[C]//Fourth International Conference on Computing,Communications and Networking Technologies(ICCCNT),2013:1-8. [67] PRAKASH M,GOWSIKA U,SATHIYAPRIYA S.An identification of abnormalities in dental with support vector machine using image processing[M].New Delhi:Springer India,2015:29-40. [68] MORTAHEB P,REZAEIAN M.Metal artifact reduction and segmentation of dental computerized tomography images using least square support vector machine and mean shift algorithm[J].Journal of Medical Signals and Sensors,2016,6(1):1-11. [69] ALBAHBAH A A,EL H M,ABD S.A new optimized approach for detection of caries in panoramic images[J].International Journal of Computer Engineering and Information Technology,2016,8(9):163-170. [70] 甘景福,晏坤,马明晗,等.基于改进聚类算法的人工神经网络短期负荷预测研究[J].电工电能新技术,2022,41(9):40-46. GAN J F,YAN K,MA M H,et al.Research on short-term load forecasting based on modified clustering and artificial neural networks[J].Advanced Technology of Electrical Engineering and Energy,2022,41(9):40-46. [71] DUNN J C.A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters[J].J Cybernetics,1973,3(3):32-57. [72] SON L H,TUAN T M.A cooperative semi-supervised fuzzy clustering framework for dental X-ray image segmentation[J].Expert Systems with Applications,2016,46:380-393. [73] KOUTSOURI G D,BERDOUSES E,TRIPOLITI E,et al.Detection of occlusal caries based on digital image processing[C]//International Conference on BioInformatics and BioEngineering,2013:1-4. [74] DATTA S,CHAKI N.Detection of dental caries lesion at early stage based on image analysis technique[C]//2015 IEEE International Conference on Computer Graphics,Vision and Information Security(CGVIS),2015:89-93. [75] SUDHEERA P,SAJJA V R,KUMAR D S,et.al.Detection of dental plaque using enhanced K-means and silhouette methods[C]//2016 International Conference on Advanced Communication Control and Computing Technologies(ICACCCT),May 25-27,2016:559-563. [76] OLTU B,KARACA B K,UYAR T,et al.Detection of occlusal plaque and caries using fuzzy C means based segmentation algorithm[C]//2021 International Conference on Innovations in Intelligent Systems and Applications(INISTA),Aug 25-27,2021:1-5. [77] ALSMADI M K.A hybrid fuzzy C-means and neutrosophic for jaw lesions segmentation[J].Ain Shams Engineering Journal,2018,9(4):697-706. [78] FARIZA A,ARIFIN A Z,ASTUTI E R.Interactive segmentation of conditional spatial FCM with Gaussian kernel-based for panoramic radiography[C]//2018 International Symposium on Advanced Intelligent Informatics(SAIN),Aug 29-30,2018:157-161. [79] AINAS A A,EL-BAKRY H M,ABD-ELGAHANY S.Detection of caries in panoramic dental X-ray images using back-propagation neural network[J].International Journal of Electronics Communication and Computer Engineering,2016,7(5):250. [80] SORNAM M,PRABHAKARAN M.A new linear adaptive swarm intelligence approach using back propagation neural network for dental caries classification[C]//International Conference on Power,Control,Signals and Instrumentation Engineering(ICPCSI),2017:2698-2703. [81] GEETHA V,APRAMEYA K S,HINDUJA D M.Dental caries diagnosis in digital radiographs using back-propagation neural network[J].Health Information Science and Systems,2020,8(1):1-14. [82] 曹家乐,李亚利,孙汉卿,等.基于深度学习的视觉目标检测技术综述[J].中国图象图形学报,2022,24(6):1697-1722. CAO J L,LI Y L,SUN H Q,et al.A survey on deep learning based visual object detection[J].Journal of Image and Graphics,2022,27(6):1697-1722. [83] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90. [84] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[C]//International Conference on Learning Representations,2015. [85] SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:1-9. [86] HUANG G,LIU Z,VAN D M L,et al.Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:4700-4708. [87] LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:3431-3440. [88] 欧阳柳,贺禧,瞿绍军.全卷积注意力机制神经网络的图像语义分割[J].计算机科学与探索,2022,16(5):1136-1145. OUYANG L,HE X,QU S J.Fully convolutional neural network with attention module for semantic segmentation[J].Journal of Frontiers of Computer Science and Technology,2022,16(5):1136-1145. [89] 刘腊梅,王晓娜,刘万军,等.融合转置卷积与深度残差图像语义分割方法[J].计算机科学与探索,2022,16(9):2132-2142. LIU L M,WANG X N,LIU W J,et al.Image semantic segmentation method with fusion of transposed convolution and deep residual[J].Journal of Frontiers of Computer Science and Technology,2022,16(9):2132-2142. [90] 张继凯,赵君,张然,等.深度学习的图像实例分割方法综述[J].小型微型计算机系统,2021,42(1):161-171. ZHANG J K,ZHAO J,ZHANG R,et al.Survey of image instance segmentation methods using deep learning[J].Journal of Chinese Computer Systems,2021,42(1):161-171. [91] RAZZAK M I,NAZ S,ZAIB A.Deep learning for medical image processing:overview,challenges and the future[J].Classification in BioApps,2018:323-350. [92] CHENG J Z,NI D,CHOU Y H,et al.Computer-aided diagnosis with deep learning architecture:applications to breast lesions in US images and pulmonary nodules in CT scans[J].Scientific Reports,2016,6(1):1-13. [93] PATIL S,KULKARNI V,BHISE A.Caries detection using multidimensional projection and neural network[J].International Journal of Knowledge-based and Intelligent Engineering Systems,2018,22(3):155-166. [94] MIKI Y,MURAMATSU C,HAYASHI T,et al.Classification of teeth in cone-beam CT using deep convolutional neural network[J].Computers in Biology and Medicine,2017,80:24-29. [95] OKTAY A B.Tooth detection with convolutional neural networks[C]//2017 Medical Technologies National Congress(TIPTEKNO),2017:1-4. [96] LAKSHMI M M,CHITRA P.Tooth decay prediction and classification from X-ray images using deep CNN[C]//2020 International Conference on Communication and Signal Processing(ICCSP),2020:1349-1355. [97] CHOI J,EUN H,KIM C.Boosting proximal dental caries detection via combination of variational methods and convolutional neural network[J].Journal of Signal Processing Systems,2018,90(1):87-97. [98] BANAR N,BERTELS J,LAURENT F,et al.Towards fully automated third molar development staging in panoramic radiographs[J].International Journal of Legal Medicine,2020,134(5):1831-1841. [99] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:779-788. [100] MA T,ZHOU X,YANG J,et al.Dental lesion segmentation using an improved ICNet network with attention[J].Micromachines,2022,13(11):1920. [101] CUI W,ZENG L,CHONG B,et al.Toothpix:pixel-level tooth segmentation in panoramic X-Ray images based on generative adversarial networks[C]//2021 IEEE 18th International Symposium on Biomedical Imaging(ISBI),2021:1346-1350. [102] TUZOFF D V,TUZOVA L N,BORNSTEIN M M,et al.Tooth detection and numbering in panoramic radiographs using convolutional neural networks[J].Dentomaxillofacial Radiology,2019,48(4):20180051. [103] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems,2015. [104] CHEN H,ZHANG K,LYU P,et al.A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films[J].Scientific Reports,2019,9(1):1-11. [105] ESTAI M,TENNANT M,GEBAUER D,et al.Deep learning for automated detection and numbering of permanent teeth on panoramic images[J].Dentomaxillofacial Radiology,2022,51(2):20210296. [106] ZHAO Y,LI P,GAO C,et al.TSASNet:tooth segmentation on dental panoramic X-ray images by two-stage attention segmentation network[J].Knowledge-Based Systems,2020,206:106338. [107] CHEN Q,ZHAO Y,LIU Y,et al.MSLPNet:multi-scale location perception network for dental panoramic X-ray image segmentation[J].Neural Computing and Applications,2021,33(16):10277-10291. [108] IM J,KIM J Y,YU H S,et al.Accuracy and efficiency of automatic tooth segmentation in digital dental models using deep learning[J].Scientific Reports,2022,12(1):1-11. [109] 张哲晗,方薇,杜丽丽,等.基于编码-解码卷积神经网络的遥感图像语义分割[J].光学学报,2020,40(3):46-55. ZHANG Z H,FANG W,DU L L,et al.Semantic segmentation of remote sensing image based on encoder-decoder convolutional neural network[J].Acta Optica Sinica,2020,40(3):46-55. [110] HINTON G E,OSINDERO S,TEH Y.A fast learning algorithm for deep belief nets[J].Neural Computation,2006,18(7):1527-1554. [111] KIM J,LEE H,SONG I,et al.DeNTNet:deep neural transfer network for the detection of periodontal bone loss using panoramic dental radiographs[J].Scientific Reports,2019,9(1):17615. [112] RONNEBERGER O,FISCHER P,BROX T.Dental X-ray image segmentation using a U-shaped deep convolutional network[C]//International Symposium on Biomedical Imaging,2015:1-13. [113] 蒋芸,谭宁,张海,等.基于条件生成对抗网络的咬翼片图像分割[J].计算机工程,2019,45(4):223-227. JIANG Y,TAN N,ZHANG H,et al.Bitewing radiography image segmentation based on conditional generative adversarial network[J].Computer Engineering,2019,45(4):223-227. [114] WIRTZ A,MIRASHI S G,WESARG S.Automatic teeth segmentation in panoramic X-ray images using a coupled shape model in combination with a neural network[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2018:712-719. [115] KOCH T L,PERSLEV M,IGEL C,et al.Accurate segmentation of dental panoramic radiographs with U-NETS[C]//2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019),2019:15-19. [116] DUONG D Q,NGUYEN K C T,KAIPATUR N R,et al.Fully automated segmentation of alveolar bone using deep convolutional neural networks from intraoral ultrasound images[C]//2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society(EMBC),2019:6632-6635. [117] SIVAGAMI S,CHITRA P,KAILASH G S R,et al.Unet architecture based dental panoramic image segmentation[C]//2020 International Conference on Wireless Communications Signal Processing and Networking(WiSPNET),2020:187-191. [118] TAO S,WANG Z.Tooth CT image segmentation method based on the U-Net network and attention module[J].Computational and Mathematical Methods in Medicine,2022,2022:3289663. [119] CANTU A G,GEHRUNG S,KROIS J,et al.Detecting caries lesions of different radiographic extension on bitewings using deep learning[J].Journal of Dentistry,2020,100:103425. [120] TAN M,LE Q.Efficientnet:rethinking model scaling for convolutional neural networks[C]//International Conference on Machine Learning,2019:6105-6114. [121] ZHANG X,LIANG Y,LI W,et al.Development and evaluation of deep learning for screening dental caries from oral photographs[J].Oral Diseases,2022,28(1):173-181. [122] KUHNISCH J,MEYER O,HESENIUS M,et al.Caries detection on intraoral images using artificial intelligence[J].Journal of Dental Research,2022,101(2):158-165. [123] LIAN L,ZHU T,ZHU F,et al.Deep learning for caries detection and classification[J].Diagnostics,2021,11(9):1672. [124] PARK E Y,CHO H,KANG S,et al.Caries detection with tooth surface segmentation on intraoral photographic images using deep learning[J].BMC Oral Health,2022,22(1):1-9. [125] FARIZA A,ARIFIN A Z,ASTUTI E R.Automatic tooth and background segmentation in dental X-ray using U-Net convolution network[C]//2020 6th International Conference on Science in Information Technology(ICSITech),2020:144-149. [126] NISHITANI Y,NAKAYAMA R,HAYASHI D,et al.Segmentation of teeth in panoramic dental X-ray images using U-Net with a loss function weighted on the tooth edge[J].Radiological Physics and Technology,2021,14(1):64-69. [127] MURESAN M P,BARBURA A R,NEDEVSCHI S.Teeth detection and dental problem classification in panoramic X-ray images using deep learning and image processing techniques[C]//2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing(ICCP),2020:457-463. [128] ROMERA E,ALVAREZ J M,BERGASA L M,et al.ERFNet:efficient residual factorized convnet for real-time semantic segmentation[J].IEEE Transactions on Intelligent Transportation Systems,2017,19(1):263-272. [129] HSU T M H,WANG Y C.DeepOPG:improving orthopantomogram finding summarization with weak supervision[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2021:366-376. [130] ZHANG F,ZHU J,HAO P,et al.BDU-net:toward accurate segmentation of dental image using border guidance and feature map distortion[J].International Journal of Imaging Systems and Technology,2022,32(4):1221-1230. [131] ZHAO S,LIU C,LUO Q.Dental data analysis based on dental X-ray panorama[C]//Proceedings of the Third International Symposium on Image Computing and Digital Medicine,2019:133-137. [132] KROIS J,GARCIA CANTU A,CHAURASIA A,et al.Generalizability of deep learning models for dental image analysis[J].Scientific Reports,2021,11(1):1-7. [133] 郑远攀,李广阳,李晔.深度学习在图像识别中的应用研究综述[J].计算机工程与应用,2019,55(12):20-36. ZHENG Y P,LI G Y,LI Y,et al.Survey of application of deep learning in image recognition[J].Computer Engineering and Applications,2019,55(12):20-36. [134] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2014:580-587. [135] GIRSHICK R.Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:1440-1448. [136] HE K,GKIOXARI G,DOLLAR P,et al.Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2961-2969. [137] LEE J,HAN S,KIM Y H,et al.Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs[J].Oral Surgery,Oral Medicine,Oral Pathology and Oral Radiology,2020,129(6):635-642. [138] LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft COCO:common objects in context[C]//European Conference on Computer Vision.Cham:Springer,2014:740-755. [139] MOUTSELOS K,BERDOUSES E,OULIS C,et al.Recognizing occlusal caries in dental intraoral images using deep learning[C]//2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society(EMBC),2019:1617-1620. [140] CHUNG M,LEE M,HONG J,et al.Pose-aware instance segmentation framework from cone beam CT images for tooth segmentation[J].Computers in Biology and Medi- cine,2020,120:103720. [141] 赵庶旭,罗庆,王小龙.基于改进Mask R-CNN的牙齿识别与分割[J].中国医学物理学杂志,2021,38(10):1229-1236. ZHAO S X,LUO Q,WANG X L.Teeth recognition and segmentation based on improved Mask R-CNN[J].Chinese Journal of Medical Physics,2021,38(10):1229-1236. [142] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:7132-7141. [143] ZHU G,PIAO Z,KIM S C.Tooth detection and segmentation with mask R-CNN[C]//2020 International Conference on Artificial Intelligence in Information and Communication(ICAIIC),2020. [144] OKTAY A B,GURSES A.Detection,segmentation,and numbering of teeth in dental panoramic images with mask regions with convolutional neural network features[M]//State of the art in neural networks and their applications.[S.l.]:Academic Press,2021:73-90. [145] SILVA B,PINHEIRO L,OLIVERIRA L,et al.A study on tooth segmentation and numbering using end-to-end deep neural networks[C]//2020 33rd SIBGRAPI Conference on Graphics,Patterns and Images(SIBGRAPI),2020:164-171. [146] PINHEIRO L,SILVA B,SOBRINHO B,et al.Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays[C]//17th International Symposium on Medical Information Processing and Analysis,2021:95-104. [147] KIRILLOV A,WU Y,HE K,et al.PointRend:image segmentation as rendering[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:9799-9808. [148] GEETHA C,SAEED A,ERIN E B,et al.Collaborative deep learning model for tooth segmentation and identification using panoramic radiographs[J].Computers in Biology and Medicine,2022,148:105829. [149] KURT B S,ORHAN K,BAYRAKDAR I S,et al.A deep learning approach for dental implant planning in cone-beam computed tomography images[J].BMC Medical Imaging,2021,21(1):1-9. [150] LIU Y,CHEN Z,CHU C,et al.Transfer learning via artificial intelligence for guiding implant placement in the posterior mandible:an in vitro study[Z].2021. [151] PARK J,LEE J,MOON S,et al.Deep learning based detection of missing tooth regions for dental implant planning in panoramic radiographic images[J].Applied Sciences,2022,12(3):1595. [152] EUN H,KIM C.Oriented tooth localization for periapical dental X-ray images via convolutional neural network[C]//2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference(APSIPA),2016:1-7. [153] SRIVASTAVA M M,KUMAR P,PRADHAN L,et al.Detection of tooth caries in bitewing radiographs using deep learning[J].arXiv:1711.07312,2017. [154] HIRAIWA T,ARIJI Y,FUKUDA M,et al.A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography[J].Dentomaxillofacial Radiology,2019,48(3):20180218. [155] LI C,XU C,GUI C,et al.Distance regularized level set evolution and its application to image segmentation[J].IEEE Transactions on Image Processing,2010,19(12):3243-3254. [156] LINS R A S,NORO L,RONCALLI A G.Use of support vector machine for teeth recognition from occlusal intraoral digital photographic images[C]//XIII Brazilian Symposium of Artificial Intelligence,2017. [157] ALSMADI M K.A hybrid firefly algorithm with fuzzy-C mean algorithm for MRI brain segmentation[J].American Journal of Applied Sciences,2014,11(9):1676-1691. [158] ALSMADI M K.MRI brain segmentation using a hybrid artificial bee colony algorithm with fuzzy-C mean algorithm[J].Journal of Applied Sciences,2015,15(1):100-109. [159] LI H,SUN G,SUN H,et al.Watershed algorithm based on morphology for dental X-ray images segmentation[C]//2012 IEEE 11th International Conference on Signal Processing,2012:877-880. |
[1] | 陈吉尚, 哈里旦木·阿布都克里木, 梁蕴泽, 阿布都克力木·阿布力孜, 米克拉依·艾山, 郭文强. 深度学习在符号音乐生成中的应用研究综述[J]. 计算机工程与应用, 2023, 59(9): 27-45. |
[2] | 姜秋香, 郭伟鹏, 王子龙, 欧阳兴涛, 隆睿睿. Python语言在水文水资源领域中的应用与展望[J]. 计算机工程与应用, 2023, 59(9): 46-58. |
[3] | 罗会兰, 陈翰. 时空卷积注意力网络用于动作识别[J]. 计算机工程与应用, 2023, 59(9): 150-158. |
[4] | 刘华玲, 皮常鹏, 赵晨宇, 乔梁. 基于深度域适应的跨域目标检测算法综述[J]. 计算机工程与应用, 2023, 59(8): 1-12. |
[5] | 何家峰, 陈宏伟, 骆德汉. 深度学习实时语义分割算法研究综述[J]. 计算机工程与应用, 2023, 59(8): 13-27. |
[6] | 张艳青, 马建红, 韩颖, 曹仰杰, 李颉, 杨聪. 真实场景下图像超分辨率重建研究综述[J]. 计算机工程与应用, 2023, 59(8): 28-40. |
[7] | 岱超, 刘萍, 史俊才, 任鸿杰. 利用U型网络的遥感影像建筑物规则化提取[J]. 计算机工程与应用, 2023, 59(8): 105-116. |
[8] | 王静, 金玉楚, 郭苹, 胡少毅. 基于深度学习的相机位姿估计方法综述[J]. 计算机工程与应用, 2023, 59(7): 1-14. |
[9] | 蒋玉英, 陈心雨, 李广明, 王飞, 葛宏义. 图神经网络及其在图像处理领域的研究进展[J]. 计算机工程与应用, 2023, 59(7): 15-30. |
[10] | 周玉蓉, 张巧灵, 于广增, 徐伟强. 基于声信号的工业设备故障诊断研究综述[J]. 计算机工程与应用, 2023, 59(7): 51-63. |
[11] | 韦健, 赵旭, 李连鹏. 融合位置信息注意力的孪生弱目标跟踪算法[J]. 计算机工程与应用, 2023, 59(7): 198-206. |
[12] | 赵宏伟, 郑嘉俊, 赵鑫欣, 王胜春, 李浥东. 基于双模态深度学习的钢轨表面缺陷检测方法[J]. 计算机工程与应用, 2023, 59(7): 285-293. |
[13] | 高腾, 张先武, 李柏. 深度学习在安全帽佩戴检测中的应用研究综述[J]. 计算机工程与应用, 2023, 59(6): 13-29. |
[14] | 蒋心璐, 陈天恩, 王聪, 李书琴, 张宏鸣, 赵春江. 农业害虫检测的深度学习算法综述[J]. 计算机工程与应用, 2023, 59(6): 30-44. |
[15] | 江倩殷, 余志, 李熙莹. 标签差网络在噪声标签数据集中的应用[J]. 计算机工程与应用, 2023, 59(6): 92-100. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||