[1] 郑阳, 林春雨, 廖康, 等.场景视点偏移的激光雷达点云分割[J]. 中国图象图形学报, 2021, 26(10): 2514-2523.
ZHENG Y, LIN C Y, LIAO K, et al. LiDAR point cloud segmentation through scene viewpoint offset[J]. Journal of Image and Graphics, 2021, 26(10): 2514-2523.
[2] 张硕, 叶勤, 史婧, 等.改进RangeNet++损失函数的车载点云小目标语义分割方法[J]. 计算机辅助设计与图形学学报, 2021, 33(5): 704-711.
ZHANG S, YE Q, SHI J, et al. A semantic segmentation method of in-vehicle small targets point cloud based on improved RangeNet++ loss function[J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(5): 704-711.
[3] SHI J, KOONJUL G S. Real-time grasping planning for robotic bin-picking and kitting applications[J]. IEEE Transactions on Automation Science and Engineering, 2017, 14(2): 809-819.
[4] ZHUANG C, WANG Z, ZHAO H, et al. Semantic part segmentation method based 3D object pose estimation with RGB-D images for bin-picking[J]. Robotics and Computer-Integrated Manufacturing, 2021, 68: 102086.
[5] YI L, ZHAO W, WANG H, et al. GSPN: generative shape proposal network for 3D instance segmentation in point cloud[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 3942-3951.
[6] BO Y, JIANAN W, RONALD C, et al. Learning object bounding boxes for 3D instance segmentation on point clouds[C]//Proceedings of the 33rd Annual Conference on Neural Information Processing Systems, Vancouver, 2019: 6737-6746.
[7] ENGELMANN F, BOKELOH M, FATHI A, et al. 3D-MPA: multi-proposal aggregation for 3D semantic instance segmentation[C]//Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition, 2020: 9028-9037.
[8] HOU J, DAI A, NIE?NER M. 3D-SIS: 3D semantic instance segmentation of RGB-D scans[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 4416-4425.
[9] PHAM Q, NGUYEN D T, HUA B S, et al. JSIS3D: joint semantic?instance segmentation of 3D point clouds with multi?task pointwise networks and multi-value conditional random fields[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 8819-8828.
[10] LEI H, TIAN Z H, LAN X, et al. OccuSeg: occupancy-aware 3D instance segmentation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Los Alamitos, 2020: 2937-2946.
[11] ELICH C, ENGELMANN F, KONTOGIANNI T, et al. 3D bird’s-eye-view instance segmentation[C]//Proceedings of the 2019 German Conference on Pattern Recognition, Dortmund, 2019: 48-61.
[12] YU L, SUN Y, ZHANG X, et al. Point cloud instance segmentation of indoor scenes using learned pairwise patch relations[J]. IEEE Access, 2021, 9: 15891-15901.
[13] LIANG Z, YANG M, HAO L I, et al. 3D instance embedding learning with a structure-aware loss function for point cloud segmentation[J]. IEEE Robotics and Automation Letters, 2020, 5(3): 4915-4922.
[14] WANG W, YU R, HUANG Q, et al. SGPN: similarity group proposal network for 3D point cloud instance segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 2569-2578.
[15] JIANG L, ZHAO H, SHI S, et al. PointGroup: dual?set point grouping for 3D instance segmentation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 4866-4875.
[16] HE T, SHEN C H, VAN DEN HENGEL A. DyCo3D: robust instance segmentation of 3D point clouds through dynamic convolution[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 354-363.
[17] 吴军, 崔玥, 赵雪梅, 等. SSA-PointNet++: 空间自注意力机制下的3D点云语义分割网络[J].计算机辅助设计与图形学学报, 2022, 34(3): 437-448.
WU J, CUI Y, ZHAO X M, et al. SSA-PointNet++: a space self-attention CNN for the semantic segmentation of 3D point cloud[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(3): 437-448.
[18] WANG X, LIU S, SHEN X, et al. Associatively segmenting instances and semantics in point clouds[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 4091-4100.
[19] ZHONG M, ZENG G. Joint semantic-instance segmentation of 3D point clouds: instance separation and semantic fusion[C]//Proceedings of the 25th International Conference on Pattern Recognition, Milan, 2020: 6616-6623.
[20] HE T, LIU Y, SHEN C, et al. Instance-aware embedding for point cloud instance segmentation[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, 2020: 255-270.
[21] FENG C A, FEI W A, GG B, et al. JSPNet: learning joint semantic & instance segmentation of point clouds via feature self-similarity and cross-task probability[J]. Pattern Recognition, 2022, 122: 108250.
[22] HE T, GONG D, TIAN Z, et al. Learning and memorizing representative prototypes for 3D point cloud semantic and instance segmentation[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, 2020: 564-580.
[23] ZHAO L, TAO W. JSNet: joint instance and semantic segmentation of 3D point clouds[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, 2020: 12951-12958.
[24] WU G N, PAN Z Y, JIANG P, et al. Bi-directional attention for joint instance and semantic segmentation in point clouds[C]//Proceedings of the 15th Asian Conference on Computer Vision, Kyoto, 2020: 209-226
[25] QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 2017 Conference on Neural Information Processing Systems, Long Beach, 2017: 5099-5108.
[26] BRABANDERE B D, NEVEN D, GOOL L V. Semantic instance segmentation with a discriminative loss function[J]. arXiv:1708.02551, 2017.
[27] DENG J K, GUO J AND ZAFEIRIOU S. ArcFace: additive angular margin loss for deep face recognition[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 4685-4694.
[28] CHU X X, ZHOU T B, ZHAN B, et al. Fair DARTS: eliminating unfair advantages in differentiable architecture search[J]. arXiv:1911.12126, 2019. |