[1] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[2] TAN M, LE Q. Efficientnet: rethinking model scaling for convolutional neural networks[C]//International Conference on Machine Learning, 2019: 6105-6114.
[3] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022.
[4] REN S, HE K, GIRSHICK R, et al. Faster RCNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015.
[5] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[6] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//European Conference on Computer Vision. Cham: Springer, 2020: 213-229.
[7] XU M, ZHANG Z, HU H, et al. End-to-end semi-supervised object detection with soft teacher[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 3060-3069.
[8] 魏志强, 毕海霞, 刘霞. 基于深度卷积神经网络的图上半监督极化SAR图像分类算法[J]. 电子学报, 2020, 48(1): 66-74.
WEI Z Q, BI H X, LIU X. A graph-based semi-supervised polSAR image classification method using deep convolutional neural networks[J]. Acta Electronica Sinica, 2020, 48(1): 66-74.
[9] 李绣心, 凌志刚, 邹文. 基于卷积神经网络的半监督高光谱图像分类[J]. 电子测量与仪器学报, 2018, 32(10): 95-102.
LI X X, LING Z G, ZOU W. Semi-supervised learning via convolutional neural network for hyperspectral image classification[J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(10): 95-102.
[10] SAJJADI M, JAVANMARDI M, TASDIZEN T. Regularization with stochastic transformations and perturbations for deep semi?supervised learning[C]//Advances in Neural Information Processing Systems, 2016.
[11] LEE D H. Pseudo-label: the simple and efficient semi-supervised learning method for deep neural network[C]//Workshop on Challenges in Representation Learning, 2013: 896.
[12] BERTHELOT D, CARLINI N, GOODFELLOW I, et al. Mixmatch: a holistic approach to semi-supervised learning[C]//Advances in Neural Information Processing Systems, 2019.
[13] SOHN K, BERTHELOT D, CARLINI N, et al. Fixmatch: simplifying semi-supervised learning with consistency and confidence[C]//Advances in Neural Information Processing Systems, 2020: 596-608.
[14] SOHN K, ZHANG Z, LI C L, et al. A simple semi-supervised learning framework for object detection[J]. arXiv:2005.04757, 2020.
[15] ZHOU Q, YU C, WANG Z, et al. Instant-teaching: an end-to-end semi-supervised object detection framework[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 4081-4090.
[16] TANG Y, CHEN W, LUO Y, et al. Humble teachers teach better students for semi-supervised object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 3132-3141.
[17] TARVAINEN A, VALPOLA H. Mean teachers are better role models: weight-averaged consistency targets improve semi?supervised deep learning results[C]//Advances in Neural Information Processing Systems, 2017.
[18] LIU Y C, MA C Y, HE Z, et al. Unbiased teacher for semi-supervised object detection[J]. arXiv:2102.09480, 2021.
[19] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[20] LI H, WU Z, SHRIVASTAVA A, et al. Rethinking pseudo labels for semi-supervised object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 1314-1322.
[21] WANG Z, LI Y L, GUO Y, et al. Combating noise: semi-supervised learning by region uncertainty quantification[C]//Advances in Neural Information Processing Systems, 2021: 9534-9545.
[22] 谢兄, 杨金鹏. YOLO-wLU: 考虑定位不确定性的目标检测算法[J]. 计算机工程与应用, 2021, 57(22): 223-231.
XIE X, YANG J P. YOLO-wLU: object detection algorithm considering localization uncertainty[J]. Computer Engineering and Applications, 2021, 57(22): 223-231.
[23] LI H, WU Z, ZHU C, et al. Learning from noisy anchors for one-stage object detection[C]//Proceedings of the IEEE/ CVF Conference on Computer Vision and Pattern Recognition, 2020: 10588-10597.
[24] JIANG B, LUO R, MAO J, et al. Acquisition of localization confidence for accurate object detection[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 784-799.
[25] HE Y, ZHU C, WANG J, et al. Bounding box regression with uncertainty for accurate object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 2888-2897.
[26] WANG J, ZHANG W, CAO Y, et al. Side-aware boundary localization for more precise object detection[C]//European Conference on Computer Vision. Cham: Springer, 2020: 403-419.
[27] QIU H, LI H, WU Q, et al. Offset bin classification network for accurate object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 13188-13197.
[28] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (voc) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338.
[29] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft coco: common objects in context[C]//European Conference on Computer Vision. Cham: Springer, 2014: 740-755.
[30] CHEN K, WANG J, PANG J, et al. MMDetection: open mmlab detection toolbox and benchmark[J]. arXiv:1906. 07155, 2019.
[31] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125. |