计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (12): 1-13.DOI: 10.3778/j.issn.1002-8331.2210-0108
张然,王学志,汪嘉葭,孟珍
出版日期:
2023-06-15
发布日期:
2023-06-15
ZHANG Ran, WANG Xuezhi, WANG Jiajia, MENG Zhen
Online:
2023-06-15
Published:
2023-06-15
摘要: 药物-靶点相互作用预测旨在发现可作用于特定蛋白质的潜在药物,在药物重定位、药物副作用预测、多重药理学和耐药性的研究中都发挥着重要作用。随着计算机处理能力的进步和计算算法的不断更新,药物-靶点相互作用预测的计算方法展现出时间短、成本低、精度高、范围广的优势,受到了广泛的关注,并取得了显著的进展。为了梳理其研究发展历程,探讨未来的研究方向,就药物-靶点相互作用预测的背景和意义进行简要概述;将方法分为基于分子对接、基于药物结构、基于文本挖掘和基于化学基因组四类进行综述,并对每类方法进行对比分析,详细阐述每类方法的数据需求及应用场景;对现有研究存在的局限性和面临的挑战进行讨论,展望未来的研究方向,为后续研究提供参考和借鉴。
张然, 王学志, 汪嘉葭, 孟珍. 药物-靶点相互作用预测的计算方法综述[J]. 计算机工程与应用, 2023, 59(12): 1-13.
ZHANG Ran, WANG Xuezhi, WANG Jiajia, MENG Zhen. Survey on Computational Approaches for Drug-Target Interaction Prediction[J]. Computer Engineering and Applications, 2023, 59(12): 1-13.
[1] DREWS J.Drug discovery:a historical perspective[J].Science,2000,287(5460):1960-1964. [2] MASOUDI-NEJAD A,MOUSAVIAN Z,BOZORGMEHR J H.Drug-target and disease networks:polypharmacology in the post-genomic era[J].In Silico Pharmacology,2013,1(1):1-4. [3] MASOUDI-SOBHANZADEH Y,OMIDI Y,AMANLOU M,et al.Drug databases and their contributions to drug repurposing[J].Genomics,2020,112(2):1087-1095. [4] PAUL S M,MYTELKA D S,DUNWIDDIE C T,et al.How to improve R&D productivity:the pharmaceutical industry’s grand challenge[J].Nature Reviews Drug Discovery,2010,9(3):203-214. [5] DICKSON M,GAGNON J P.Key factors in the rising cost of new drug discovery and development[J].Nature Reviews Drug Discovery,2004,3(5):417-429. [6] CHENG L,HAN X,ZHU Z,et al.Functional alterations caused by mutations reflect evolutionary trends of SARS-CoV-2[J].Briefings in Bioinformatics,2021,22(2):1442-1450. [7] CHONG C R,SULLIVAN D J.New uses for old drugs[J].Nature,2007,448(7154):645-646. [8] ZENG X,LIU L,Lü L,et al.Prediction of potential disease-associated microRNAs using structural perturbation method[J].Bioinformatics,2018,34(14):2425-2432. [9] ZHANG X,ZOU Q,RODRIGUEZ-PATON A,et al.Meta-path methods for prioritizing candidate disease miRNAs[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2017,16(1):283-291. [10] SHI H,WU Y,ZHENG Z Q,et al.A discussion of micrornas in cancers[J].Current Bioinformatics,2014,9(5):453-462. [11] ZENG X,LIAO Y,LIU Y,et al.Prediction and validation of disease genes using HeteSim scores[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2016,14(3):687-695. [12] ZENG J,LI D,WU Y,et al.An empirical study of features fusion techniques for protein-protein interaction prediction[J].Current Bioinformatics,2016,11(1):4-12. [13] WANG Z,ZOU Q,JIANG Y,et al.Review of protein subcellular localization prediction[J].Current Bioinformatics,2014,9(3):331-342. [14] EZZAT A,WU M,LI X L,et al.Computational prediction of drug-target interactions using chemogenomic approaches:an empirical survey[J].Briefings in Bioinformatics,2019,20(4):1337-1357. [15] WANG T,WU M B,ZHANG R H,et al.Advances in computational structure-based drug design and application in drug discovery[J].Current Topics in Medicinal Chemistry,2016,16(9):901-916. [16] BAMBINI S,RAPPUOLI R.The use of genomics in microbial vaccine development[J].Drug Discovery Today,2009,14(5/6):252-260. [17] KITCHEN D B,DECORNEZ H,FURR J R,et al.Docking and scoring in virtual screening for drug discovery:methods and applications[J].Nature Reviews Drug Discovery,2004,3(11):935-949. [18] TAYLOR J S,BURNETT R M.DARWIN:a program for docking flexible molecules[J].Proteins:Structure,Function,and Bioinformatics,2000,41(2):173-191. [19] CONNOLLY M L.Analytical molecular surface calculation[J].Journal of Applied Crystallography,1983,16(5):548-558. [20] KATCHALSKI-KATZIR E,SHARIV I,EISENSTEIN M,et al.Molecular surface recognition:determination of geometric fit between proteins and their ligands by correlation techniques[J].Proceedings of the National Academy of Sciences,1992,89(6):2195-2199. [21] YANG C,CHEN E A,ZHANG Y.Protein-ligand docking in the machine-learning era[J].Molecules,2022,27(14):4568. [22] HALPERIN I,MA B,WOLFSON H,et al.Principles of docking:an overview of search algorithms and a guide to scoring functions[J].Proteins:Structure,Function,and Bioinformatics,2002,47(4):409-443. [23] DIAS R,DE AZEVEDO J,WALTER F.Molecular docking algorithms[J].Current Drug Targets,2008,9(12):1040-1047. [24] HALGREN T A.Merck molecular force field.I.Basis,form,scope,parameterization,and performance of MMFF94[J].Journal of Computational Chemistry,1996,17(5/6):490-519. [25] B?HM H J.The computer program LUDI:a new method for the de novo design of enzyme inhibitors[J].Journal of Computer-Aided Molecular Design,1992,6(1):61-78. [26] RAREY M,KRAMER B,LENGAUER T,et al.A fast flexible docking method using an incremental construction algorithm[J].Journal of Molecular Biology,1996,261(3):470-489. [27] JAIN A N.Surflex:fully automatic flexible molecular docking using a molecular similarity-based search engine[J].Journal of Medicinal Chemistry,2003,46(4):499-511. [28] DEWITTE R S,SHAKHNOVICH E I.SMoG:de novo design method based on simple,fast,and accurate free energy estimates.1.Methodology and supporting evidence[J].Journal of the American Chemical Society,1996,118(47):11733-11744. [29] MITCHELL J B O,LASKOWSKI R A,ALEX A,et al.BLEEP—potential of mean force describing protein-ligand interactions:I.Generating potential[J].Journal of Computational Chemistry,1999,20(11):1165-1176. [30] SHIMADA J,ISHCHENKO A V,SHAKHNOVICH E I.Analysis of knowledge-based protein-ligand potentials using a self-consistent method[J].Protein Science,2000,9(4):765-775. [31] VELEC H F G,GOHLKE H,KLEBE G.DrugScoreCSD knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction[J].Journal of Medicinal Chemistry,2005,48(20):6296-6303. [32] FEHER M.Consensus scoring for protein-ligand interactions[J].Drug Discovery Today,2006,11(9/10):421-428. [33] ACHARYA C,COOP A E,POLLI J,et al.Recent advances in ligand-based drug design:relevance and utility of the conformationally sampled pharmacophore approach[J].Current Computer-Aided Drug Design,2011,7(1):10-22. [34] AUER J,BAJORATH J.Molecular similarity concepts and search calculations[M]//Bioinformatics.[S.l.]:Humana Press,2008:327-347. [35] HUTTER M C.Graph-based similarity concepts in virtual screening[J].Future Medicinal Chemistry,2011,3(4):485-501. [36] WILLETT P.Similarity-based virtual screening using 2D fingerprints[J].Drug Discovery Today,2006,11(23/24):1046-1053. [37] KEISER M J,ROTH B L,ARMBRUSTER B N,et al.Relating protein pharmacology by ligand chemistry[J].Nature Biotechnology,2007,25(2):197-206. [38] TROPSHA A.Best practices for QSAR model development,validation,and exploitation[J].Molecular Informatics,2010,29(6/7):476-488. [39] KENT J T.Information gain and a general measure of correlation[J].Biometrika,1983,70(1):163-173. [40] CHEN Y W,LIN C J.Combining SVMs with various feature selection strategies[M]//Feature extraction.Berlin,Heidelberg:Springer,2006:315-324. [41] MAO K Z.Orthogonal forward selection and backward elimination algorithms for feature subset selection[J].IEEE Transactions on Systems,Man and Cybernetics,Part B (Cybernetics),2004,34(1):629-634. [42] WHITLEY D,SUTTON A M.Genetic algorithms-a survey of models and methods[M]//Handbook of natural computing.Berlin,Heidelberg:Springer,2012:637-671. [43] GOODARZI M,FREITAS M P,JENSEN R.Feature selection and linear/nonlinear regression methods for the accurate prediction of glycogen synthase kinase-3 inhibitory activities[J].Journal of Chemical Information and Modeling,2009,49(4):824-832. [44] MUELLER R,RODRIGUEZ A L,DAWSON E S,et al.Identification of metabotropic glutamate receptor subtype 5 potentiators using virtual high-throughput screening[J].ACS Chemical Neuroscience,2010,1(4):288-305. [45] WOLBER G,SEIDEL T,BENDIX F,et al.Molecule-pharmacophore superpositioning and pattern matching in computational drug design[J].Drug Discovery Today,2008,13(1/2):23-29. [46] POPTODOROV K,LUU T,LANGER T,et al.Pharmacophores and pharmacophores searches[M]//Methods and principles in medicinal chemistry.Weinheim,Germany:Wiley-VCH,2006:17-47. [47] GOODFORD P J.A computational procedure for determining energetically favorable binding sites on biologically important macromolecules[J].Journal of Medicinal Chemistry,1985,28(7):849-857. [48] DIXON S L,SMONDYREV A M,KNOLL E H,et al.PHASE:a new engine for pharmacophore perception,3D QSAR model development,and 3D database screening:1.Methodology and preliminary results[J].Journal of Computer-Aided Molecular Design,2006,20(10):647-671. [49] KUROGI Y,GUNER O F.Pharmacophore modeling and three-dimensional database searching for drug design using catalyst[J].Current Medicinal Chemistry,2001,8(9):1035-1055. [50] MARTIN Y C,BURES M G,DANAHER E A,et al.A fast new approach to pharmacophore mapping and its application to dopaminergic and benzodiazepine agonists[J].Journal of Computer-Aided Molecular Design,1993,7(1):83-102. [51] JONES G,WILLETT P,GLEN R C.A genetic algorithm for flexible molecular overlay and pharmacophore elucidation[J].Journal of Computer-Aided Molecular Design,1995,9(6):532-549. [52] FLEUREN W W M,ALKEMA W.Application of text mining in the biomedical domain[J].Methods,2015,74:97-106. [53] CAMPILLOS M,KUHN M,GAVIN A C,et al.Drug target identification using side-effect similarity[J].Science,2008,321(5886):263-266. [54] ZARAVINOS A,VOLANIS D,LAMBROU G I,et al.Role of the angiogenic components,VEGFA,FGF2,OPN and RHOC,in urothelial cell carcinoma of the urinary bladder[J].Oncology Reports,2012,28(4):1159-1166. [55] WU L,LI X,YANG J,et al.CHD@ ZJU:a knowledgebase providing network-based research platform on coronary heart disease[J].Database,2013. [56] HEWETT M,OLIVER D E,RUBIN D L,et al.PharmGKB:the pharmacogenetics knowledge base[J].Nucleic Acids Research,2002,30(1):163-165. [57] CHEN B D,JIAO X,WANG D,et al. Chem2Bio2RDF:a semantic framework for linking and data mining chemogenomic and systems chemical biology data[J].BMC Bioinformatics,2010,11:255. [58] ZHU S,OKUNO Y,TSUJIMOTO G,et al.A probabilistic model for mining implicit ‘chemical compound-gene’relations from literature[J].Bioinformatics,2005,21:245-251. [59] HOPKINS A L,GROOM C R.The druggable genome[J].Nature Reviews Drug Discovery,2002,1(9):727-730. [60] YAMANISHI Y.Chemogenomic approaches to infer drug-target interaction networks[J].Data Mining for Systems Biology,2013,939:97-113. [61] KLABUNDE T.Chemogenomic approaches to drug discovery:similar receptors bind similar ligands[J].British Journal of Pharmacology,2007,152(1):5-7. [62] SCHUFFENHAUER A,FLOERSHEIM P,ACKLIN P,et al.Similarity metrics for ligands reflecting the similarity of the target proteins[J].Journal of Chemical Information and Computer Sciences,2003,43(2):391-405. [63] ZHANG W,ZOU H,LUO L,et al.Predicting potential side effects of drugs by recommender methods and ensemble learning[J].Neurocomputing,2016,173:979-987. [64] ZHANG W,CHEN Y,LIU F,et al.Predicting potential drug-drug interactions by integrating chemical,biological,phenotypic and network data[J].BMC Bioinformatics,2017,18(1):1-12. [65] VAN LAARHOVEN T,MARCHIORI E.Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile[J].PloS One,2013,8(6):e66952. [66] SHI J Y,YIU S M.SRP:A concise non-parametric similarity-rank-based model for predicting drug-target interactions[C]//2015 IEEE International Conference on Bioinformatics and Biomedicine(BIBM),2015:1636-1641. [67] BLEAKLEY K,YAMANISHI Y.Supervised prediction of drug-target interactions using bipartite local models[J].Bioinformatics,2009,25(18):2397-2403. [68] MEI J P,KWOH C K,YANG P,et al.Drug-target interaction prediction by learning from local information and neighbors[J].Bioinformatics,2013,29(2):238-245. [69] BUZA K,PE?KA L.Drug-target interaction prediction with bipartite local models and hubness-aware regression[J].Neurocomputing,2017,260:284-293. [70] G?NEN M.Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization[J].Bioinformatics,2012,28(18):2304-2310. [71] ZHENG X,DING H,MAMITSUKA H,et al.Collaborative matrix factorization with multiple similarities for predicting drug-target interactions[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2013:1025-1033. [72] EZZAT A,ZHAO P,WU M,et al.Drug-target interaction prediction with graph regularized matrix factorization[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2016,14(3):646-656. [73] HAO M,BRYANT S H,WANG Y.Predicting drug-target interactions by dual-network integrated logistic matrix factorization[J].Scientific Reports,2017,7(1):1-11. [74] TABEI Y,PAUWELS E,STOVEN V,et al.Identification of chemogenomic features from drug-target interaction networks using interpretable classifiers[J].Bioinformatics,2012,28(18):487-494. [75] XIAO X,MIN J L,WANG P,et al.iGPCR-drug:a web server for predicting interaction between GPCRs and drugs in cellular networking[J].PloS One,2013,8(8):e72234. [76] MENG F R,YOU Z H,CHEN X,et al.Prediction of drug-target interaction networks from the integration of protein sequences and drug chemical structures[J].Molecules,2017,22(7):1119. [77] LUO Y,ZHAO X,ZHOU J,et al.A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information[J].Nature Communications,2017,8(1):1-13. [78] HIROHARA M,SAITO Y,KODA Y,et al.Convolutional neural network based on SMILES representation of compounds for detecting chemical motif[J].BMC Bioinformatics,2018,19(19):83-94. [79] WANG L,YOU Z H,CHEN X,et al.A computational-based method for predicting drug-target interactions by using stacked autoencoder deep neural network[J].Journal of Computational Biology,2018,25(3):361-373. [80] SHI H,LIU S,CHEN J,et al.Predicting drug-target interactions using Lasso with random forest based on evolutionary information and chemical structure[J].Genomics,2019,111(6):1839-1852. [81] RU X,WANG L,LI L,et al.Exploration of the correlation between GPCRs and drugs based on a learning to rank algorithm[J].Computers in Biology and Medicine,2020,119:103660. [82] CHENG F,LIU C,JIANG J,et al.Prediction of drug-target interactions and drug repositioning via network-based inference[J].PLoS Computational Biology,2012,8(5):e1002503. [83] CHEN X,LIU M X,YAN G Y.Drug-target interaction prediction by random walk on the heterogeneous network[J].Molecular BioSystems,2012,8(7):1970-1978. [84] BA-ALAWI W,SOUFAN O,ESSACK M,et al.DASPfind:new efficient method to predict drug-target interactions[J].Journal of Cheminformatics,2016,8(1):1-9. [85] GAWEHN E,HISS J A,SCHNEIDER G.Deep learning in drug discovery[J].Molecular Informatics,2016,35(1):3-14. [86] EKINS S.The next era:deep learning in pharmaceutical research[J].Pharmaceutical Research,2016,33(11):2594-2603. [87] WAN F,HONG L,XIAO A,et al.NeoDTI:neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions[J].Bioinformatics,2019,35(1):104-111. [88] ZENG X,ZHU S,LU W,et al.Target identification among known drugs by deep learning from heterogeneous networks[J].Chemical Science,2020,11(7):1775-1797. [89] ZHAO T,HU Y,VALSDOTTIR L R,et al.Identifying drug-target interactions based on graph convolutional network and deep neural network[J].Briefings in Bioinformatics,2021,22(2):2141-2150. [90] PENG J,WANG Y,GUAN J,et al.An end-to-end heterogeneous graph representation learning-based framework for drug-target interaction prediction[J].Briefings in Bioinformatics,2021,22(5):430. [91] WANG H,ZHOU G,LIU S,et al.Drug-target interaction prediction with graph attention networks[J].arXiv:2107.06099,2021. [92] ZHOU D,XU Z,LI W T,et al.MultiDTI:drug-target interaction prediction based on multi-modal representation learning to bridge the gap between new chemical entities and known heterogeneous network[J].Bioinformatics,2021,37(23):4485-4492. [93] LI Y,QIAO G,WANG K,et al.Drug-target interaction predication via multi-channel graph neural networks[J].Briefings in Bioinformatics,2022,23(1):346. [94] YU L,QIU W,LIN W,et al.HGDTI:predicting drug-target interaction by using information aggregation based on heterogeneous graph neural network[J].BMC Bioinformatics,2022,23(1):1-18. [95] ZHANG P,WEI Z,CHE C,et al.DeepMGT-DTI:Transformer network incorporating multilayer graph information for drug-target interaction prediction[J].Computers in Biology and Medicine,2022,142:105214. [96] ZHANG R.An ensemble learning approach for improving drug-target interactions prediction[C]//Proceedings of the 4th International Conference on Computer Engineering and Networks.Cham:Springer,2015:433-442. [97] EZZAT A,WU M,LI X L,et al.Drug-target interaction prediction using ensemble learning and dimensionality reduction[J].Methods,2017,129:81-88. [98] SHARMA A,RANI R.BE-DTI’:ensemble framework for drug target interaction prediction using dimensionality reduction and active learning[J].Computer Methods and Programs in Biomedicine,2018,165:151-162. [99] YANG J,HE S,ZHANG Z,et al.NegStacking:drug-target interaction prediction based on ensemble learning and logistic regression[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2021,18(6):2624-2634. [100] PLIAKOS K,VENS C.Drug-target interaction prediction with tree-ensemble learning and output space reconstruction[J].BMC Bioinformatics,2020,21(1):1-11. [101] XUAN P,CHEN B,ZHANG T.Prediction of drug-target interactions based on network representation learning and ensemble learning[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2021,18(6):2671-2681. [102] THAFAR M A,OLAYAN R S,ALBARADEI S,et al.DTi2Vec:drug-target interaction prediction using network embedding and ensemble learning[J].Journal of Cheminformatics,2021,13(1):1-18. [103] BERMAN H M,WESTBROOK J,FENG Z,et al.The protein data bank[J].Nucleic Acids Research,2000,28(1):235-242. [104] WISHART D S,FEUNANG Y D,GUO A C,et al.DrugBank 5.0:a major update to the DrugBank database for 2018[J].Nucleic Acids Research,2018,46(1):1074-1082. [105] KIM S,CHEN J,CHENG T,et al.PubChem 2019 update:improved access to chemical data[J].Nucleic Acids Research,2019,47(1):1102-1109. [106] CHEN J,SWAMIDASS S J,DOU Y,et al.ChemDB:a public database of small molecules and related chemoinformatics resources[J].Bioinformatics,2005,21(22):4133-4139. [107] CANESE K,WEIS S.PubMed:the bibliographic database[J].The NCBI Handbook,2013,2(1). [108] XIA Z,WU L Y,ZHOU X,et al.Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces[C]//International Symposium on Optimization and Systems Biology,2010:1-16. [109] MA T,XIAO C,ZHOU J,et al.Drug similarity integration through attentive multi-view graph auto-encoders[J].arXiv:1804.10850,2018. [110] HUANG K,XIAO C,GLASS L M,et al.MolTrans:molecular interaction transformer for drug-target interaction prediction[J].Bioinformatics,2021,37(6):830-836. [111] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[J].Advances in Neural Information Processing Systems,2017,30. [112] HAO B,ZHANG J,YIN H,et al.Pre-training graph neural networks for cold-start users and items representation[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining,2021:265-273. [113] LIN Z,TIAN C,HOU Y,et al.Improving graph collaborative filtering with neighborhood-enriched contrastive learning[C]//Proceedings of the ACM Web Conference,2022:2320-2329. |
[1] | 范劭博, 张中杰, 黄健. 决策树剪枝加强的关联规则分类方法[J]. 计算机工程与应用, 2023, 59(5): 87-94. |
[2] | 杨寒雨, 赵晓永, 王磊. 数据归一化方法综述[J]. 计算机工程与应用, 2023, 59(3): 13-22. |
[3] | 林原, 王凯巧, 杨亮, 林鸿飞, 任璐, 丁堃. 基于pu-learning的同行评议文本情感分析[J]. 计算机工程与应用, 2023, 59(3): 143-149. |
[4] | 姜阳, 薛哲, 李昂. 融合负载中心性的科研学者兴趣挖掘算法[J]. 计算机工程与应用, 2023, 59(12): 94-99. |
[5] | 张伊扬, 钱育蓉, 陶文彬, 冷洪勇, 李自臣, 马梦楠. 基于深度学习的属性图异常检测综述[J]. 计算机工程与应用, 2022, 58(19): 1-13. |
[6] | 盛锦超, 杜明晶, 李宇蕊, 孙嘉睿. 结合柯西核的分类型数据密度峰值聚类算法[J]. 计算机工程与应用, 2022, 58(18): 162-171. |
[7] | 周慧颖, 汪廷华, 张代俐. 多标签特征选择研究进展[J]. 计算机工程与应用, 2022, 58(15): 52-67. |
[8] | 宗晓萍,陶泽泽. 基于掌握速度的知识追踪模型[J]. 计算机工程与应用, 2021, 57(6): 117-123. |
[9] | 高天宇,王庆荣,杨磊. 粗糙集属性依赖度强化的应急数据挖掘模型[J]. 计算机工程与应用, 2021, 57(3): 87-93. |
[10] | 钟雅婷,林艳梅,陈定甲,彭昱忠,曾远鹏. 多组学数据整合分析和应用研究综述[J]. 计算机工程与应用, 2021, 57(23): 1-17. |
[11] | 马洋,赵旭俊. 基于相关子空间的多源离群检测算法[J]. 计算机工程与应用, 2021, 57(17): 88-95. |
[12] | 王一凡,鲁慧民,高若然,李阳. 手指静脉图像感兴趣区域提取研究综述[J]. 计算机工程与应用, 2021, 57(13): 34-42. |
[13] | 张念蓬,吴旭,朱强. 基于熵的过采样框架[J]. 计算机工程与应用, 2021, 57(13): 96-101. |
[14] | 张博文,刘智,桑国明. 基于核密度波动的异常检测算法[J]. 计算机工程与应用, 2021, 57(12): 132-136. |
[15] | 饶加旺,马荣华. 改进核密度估计的空间点密度算法[J]. 计算机工程与应用, 2021, 57(11): 260-265. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||