计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (24): 309-318.DOI: 10.3778/j.issn.1002-8331.2208-0186
瞿智豪,胡建鹏,黄子麒,张庚
QU Zhihao, HU Jianpeng, HUANG Ziqi, ZHANG Geng
摘要: 利用知识图谱辅助工业设备故障处置能够有效提升故障处置效率。针对工业设备故障领域实体标注主要依靠人力,耗时耗力的问题,提出一种基于外部知识库的设备故障处置实体半自动标注方法,利用爬取的设备资料和义原等外部知识实现了领域内实体半自动标注,节省了近一半的人工标注成本。针对现有实体抽取方法应用在工业设备故障处置领域实体类型和实体标签识别错误的问题,提出一种融入词性和词边界信息的设备故障处置实体抽取方法,该方法在字嵌入时,在BERT预训练字向量的基础上融入了字所在词的词性信息和词边界信息等多源信息,获得比其他字嵌入方法更多的语义信息,结合BiLSTM和CRF构成实体抽取模型,在自建数据集上的实验结果表明该模型识别性能相较于BERT-BiLSTM-CRF,F1值提升了3.8个百分点,且在更少的迭代次数就获得较好的效果;在知识图谱应用上,提出一种多模态信息融合的设备故障处置方案推荐方法,该方法利用深度学习模型和传感器信息判断故障的发生,并基于知识图谱推荐维修人员和维修方式。