计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (21): 40-52.DOI: 10.3778/j.issn.1002-8331.2206-0352
罗德虎,冉启武,杨超,豆旺
出版日期:
2022-11-01
发布日期:
2022-11-01
LUO Dehu, RAN Qiwu, YANG Chao, DOU Wang
Online:
2022-11-01
Published:
2022-11-01
摘要: 语音是人们传递信息内容的同时又表达情感态度的媒介,语音情感识别是人机交互的重要组成部分。由语音情感识别的概念和历史发展进程入手,从6个角度逐步展开对语音情感识别研究体系进行综述。分析常用的情感描述模型,归纳常用的情感语音数据库和不同类型数据库的特点,研究语音情感特征的提取技术。通过比对3种语音情感识别方法的众多学者的多方面研究,得出语音情感识别方法可期望应用场景的态势,展望语音情感识别技术的挑战和发展趋势。
罗德虎, 冉启武, 杨超, 豆旺. 语音情感识别研究综述[J]. 计算机工程与应用, 2022, 58(21): 40-52.
LUO Dehu, RAN Qiwu, YANG Chao, DOU Wang. Review on Speech Emotion Recognition Research[J]. Computer Engineering and Applications, 2022, 58(21): 40-52.
[1] 韩文静,李海峰,阮华斌,等.语音情感识别研究进展综述[J].软件学报,2014,25(1):37?50. HAN W J,LI H F,RUAN H B,et al.Review on speech emotion recognition[J].Journal of Software,2014,25(1):37-50. [2] ZHAO S,XU M,HUANG Q,et al.Introduction to the special issue on MMAC:multimodal affective computing of large-scale multimedia data[J].IEEE MultiMedia,2021,28(2):8-10. [3] LI Y,TAO J,CHAO L,et al.CHEAVD:a Chinese natural emotional audio-visual database[J].Journal of Ambient Intelligence and Humanized Computing,2017,8(6):913-924. [4] CHOU H C,LIN W C,CHANG L C,et al.NNIME:the NTHU-NTUA Chinese interactive multimodal emotion corpus[C]//2017 Seventh International Conference on Affective Computing and Intelligent Interaction(ACII),2017:292-298. [5] YU W,XU H,MENG F,et al.Ch-sims:a Chinese multimodal sentiment analysis dataset with fine-grained annotation of modality[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,2020:3718-3727. [6] MOHAMAD NEZAMI O,JAMSHID LOU P,KARAMI M.ShEMO:a large-scale validated database for Persian speech emotion detection[J].Language Resources and Evaluation,2019,53(1):1-16. [7] BARROS P,CHURAMANI N,LAKOMKIN E,et al.The omg-emotion behavior dataset[C]//2018 International Joint Conference on Neural Networks(IJCNN),2018:1-7. [8] LOTFIAN R,BUSSO C.Building naturalistic emotionally balanced speech corpus by retrieving emotional speech from existing podcast recordings[J].IEEE Transactions on Affective Computing,2017,10(4):471-483. [9] ZHALEHPOUR S,ONDER O,AKHTAR Z,et al.BAUM-1:a spontaneous audio-visual face database of affective and mental states[J].IEEE Transactions on Affective Computing,2016,8(3):300-313. [10] CAO H,COOPER D G,KEUTMANN M K,et al.Crema-d:crowd-sourced emotional multimodal actors dataset[J].IEEE Transactions on Affective Computing,2014,5(4):377-390. [11] ZADEH A A B,LIANG P P,PORIA S,et al.Multimodal language analysis in the wild:cmu-mosei dataset and interpretable dynamic fusion graph[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers),2018:2236-2246. [12] PARADA-CABALEIRO E,COSTANTINI G,BATLINER A,et al.DEMoS:an Italian emotional speech corpus[J].Language Resources and Evaluation,2020,54(2):341-383. [13] GERCZUK M,AMIRIPARIAN S,OTTL S,et al.EmoNet:a transfer learning framework for multi-corpus speech emotion recognition[J].arXiv:2103.08310.2021. [14] NICOLAOU M A,PAVLOVIC V,PANTIC M.Dynamic probabilistic CCA for analysis of affective behavior and fusion of continuous annotations[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,36(7):1299-1311. [15] TRUONG K P,VAN LEEUWEN D A,DE JONG F M G.Speech-based recognition of self-reported and observed emotion in a dimensional space[J].Speech Communication,2012,54(9):1049-1063. [16] STAPPEN L,SCHUMANN L,SERTOLLI B,et al.MuSe-Toolbox:the multimodal sentiment analysis continuous annotation fusion and discrete class transformation toolbox[C]//Proceedings of the 2nd Conference on Multimodal Sentiment Analysis Challenge,2021:75-82. [17] DENG J,XU X,ZHANG Z,et al.Semisupervised autoencoders for speech emotion recognition[J].IEEE/ACM Transactions on Audio,Speech,and Language Processing,2017,26(1):31-43. [18] SONG P,ZHENG W,YU Y,et al.Speech emotion recognition based on robust discriminative sparse regression[J].IEEE Transactions on Cognitive and Developmental Systems,2020,13(2):343-353. [19] TRIGEORGIS G,RINGEVAL F,BRUECKNER R,et al.Adieu features? end-to-end speech emotion recognition using a deep convolutional recurrent network[C]//2016 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP),2016:5200-5204. [20] LUENGO I,NAVAS E,HERNáEZ I,et al.Automatic emotion recognition using prosodic parameters[C]//Ninth European Conference on Speech Communication and Technology,2005. [21] ILIOU T,ANAGNOSTOPOULOS C N.Statistical evaluation of speech features for emotion recognition[C]//2009 Fourth International Conference on Digital Telecommunications,2009:121-126. [22] LIU G K.Evaluating gammatone frequency cepstral coefficients with neural networks for emotion recognition from speech[J].arXiv:1806.09010.2018. [23] JIANG L,TAN P,YANG J,et al.Speech emotion recognition using emotion perception spectral feature[J].Concurrency and Computation:Practice and Experience,2021,33(11):e5427. [24] TAO H,LIANG R,ZHA C,et al.Spectral features based on local Hu moments of Gabor spectrograms for speech emotion recognition[J].IEICE Transactions on Information and Systems,2016,99(8):2186-2189. [25] PENG Z,DANG J,UNOKI M,et al.Multi-resolution modulation-filtered cochleagram feature for LSTM-based dimensional emotion recognition from speech[J].Neural Networks,2021,140:261-273. [26] GUIDI A,GENTILI C,SCILINGO E P,et al.Analysis of speech features and personality traits[J].Biomedical Signal Processing and Control,2019,51:1-7. [27] BORCHERT M,DUSTERHOFT A.Emotions in speech-experiments with prosody and quality features in speech for use in categorical and dimensional emotion recognition environments[C]//2005 International Conference on Natural Language Processing and Knowledge Engineering,2005:147-151. [28] ZHANG S.Emotion recognition in Chinese natural speech by combining prosody and voice quality features[C]//International Symposium on Neural Networks.Berlin,Heidelberg:Springer,2008:457-464. [29] JACOB A.Speech emotion recognition based on minimal voice quality features[C]//2016 International Conference on Communication and Signal Processing(ICCSP),2016:886-890. [30] LI X,TAO J,JOHNSON M T,et al.Stress and emotion classification using jitter and shimmer features[C]//2007 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP’07),2007:10811084. [31] WANG K,AN N,LI B N,et al.Speech emotion recognition using Fourier parameters[J].IEEE Transactions on Affective Computing,2015,6(1):69-75. [32] RAO K S,KOOLAGUDI S G,VEMPADA R R.Emotion recognition from speech using global and local prosodic features[J].International Journal of Speech Technology,2013,16(2):143-160. [33] SCHULLER B,RIGOLL G,LANG M.Hidden Markov model-based speech emotion recognition[C]//2003 IEEE International Conference on Acoustics,Speech,and Signal Processing,2003. [34] SHAMI M T,KAMEL M S.Segment-based approach to the recognition of emotions in speech[C]//2005 IEEE International Conference on Multimedia and Expo,2005:4. [35] ZHAO H,GAO Y,XIAO Y.Upgraded attention-based local feature learning block for speech emotion recognition[C]//Pacific-Asia Conference on Knowledge Discovery and Data Mining.Cham:Springer,2021:118-130. [36] BUSSO C,LEE S,NARAYANAN S.Analysis of emotionally salient aspects of fundamental frequency for emotion detection[J].IEEE Transactions on Audio,Speech,and Language Processing,2009,17(4):582-596. [37] NWE T L,FOO S W,DE SILVA L C.Speech emotion recognition using hidden Markov models[J].Speech Communication,2003,41(4):603-623. [38] WU S,FALK T H,CHAN W Y.Automatic speech emotion recognition using modulation spectral features[J].Speech Communication,2011,53(5):768-785. [39] 唐闺臣,冯月芹,梁瑞宇,等.面向语音情感识别的语谱特征提取算法研究[J].计算机工程与应用,2016,52(21):152-156. TANG G C,FENG Y Q,LIANG R Y,et al.Research on algorithm of spectral feature extraction for speech emotion recognition[J].Computer Engineering and Applications,2016,52(21):152-156. [40] HAN K,YU D,TASHEV I.Speech emotion recognition using deep neural network and extreme learning machine[C]//Proceedings of Interspeech 2014,2014:223-227. [41] LUO D,ZOU Y,HUANG D.Investigation on joint representation learning for robust feature extraction in speech emotion recognition[C]//Interspeech,2018:152-156. [42] WU X,CAO Y,LU H,et al.Speech emotion recognition using sequential capsule networks[J].IEEE/ACM Transactions on Audio,Speech,and Language Processing,2021,29:3280-3291. [43] EYBEN F,WENINGER F,GROSS F,et al.Recent developments in opensmile,the munich open-source multimedia feature extractor[C]//Proceedings of the 21st ACM International Conference on Multimedia,2013:835-838. [44] JAHANGIR R,TEH Y W,HANIF F,et al.Deep learning approaches for speech emotion recognition:state of the art and research challenges[J].Multimedia Tools and Applications,2021,80:23813. [45] BANDELA S R,KUMAR T K.Stressed speech emotion recognition using feature fusion of teager energy operator and MFCC[C]//2017 8th International Conference on Computing,Communication and Networking Technologies(ICCCNT),2017:1-5. [46] RAO K S,KOOLAGUDI S G.Robust emotion recognition using sentence,word and syllable level prosodic features[M]//Robust emotion recognition using spectral and prosodic features.New York,NY:Springer,2013:47-69. [47] ARA?O K A,GLOOR P,ORSENIGO C,et al.When old meets new:emotion recognition from speech signals[J].Cognitive Computation,2021,13(3):771-783. [48] 王怡,王黎明,柴玉梅.融合多特征的语音情感识别方法[J].小型微型计算机系统,2022,43(6):1232-1239. WANG Y,WANG L M,CHAI Y M.Speech emotion recognition method fusion with multi-feature[J].Journal of Chinese Computer Systems,2022,43(6):1232-1239. [49] WANG C,REN Y,ZHANG N,et al.Speech emotion recognition based on multi-feature and multi-lingual fusion[J].Multimedia Tools and Applications,2021:1-11. [50] SUN L,CHEN J,XIE K,et al.Deep and shallow features fusion based on deep convolutional neural network for speech emotion recognition[J].International Journal of Speech Technology,2018,21(4):931-940. [51] YU C,TIAN Q,CHENG F,et al.Speech emotion recognition using support vector machines[C]//International Conference on Computer Science and Information Engineering.Berlin,Heidelberg:Springer,2011:215-220. [52] SEEHAPOCH T,WONGTHANAVASU S.Speech emotion recognition using support vector machines[C]//2013 5th International Conference on Knowledge and Smart Technology(KST),2013:86-91. [53] AOUANI H,BEN AYED Y.Deep support vector machines for speech emotion recognition[C]//International Conference on Intelligent Systems Design and Applications.Cham:Springer,2019:406-415. [54] LIN Y L,WEI G.Speech emotion recognition based on HMM and SVM[C]//2005 International Conference on Machine Learning and Cybernetics,2005:4898-4901. [55] NTALAMPIRAS S.Toward language-agnostic speech emotion recognition[J].Journal of the Audio Engineering Society,2020,68(1/2):7-13. [56] MISHRA H K,SEKHAR C C.Variational Gaussian mixture models for speech emotion recognition[C]//2009 Seventh International Conference on Advances in Pattern Recognition,2009:183-186. [57] XIAO Z,DELLANDREA E,DOU W,et al.Multistage classification of emotional speech motivated by a dimensional emotion model[J].Multimedia Tools and Applications.2010,46(1):119-145. [58] ZEHRA W,JAVED A R,JALIL Z,et al.Cross corpus multi-lingual speech emotion recognition using ensemble learning[J].Complex & Intelligent Systems,2021,7:1845-1854. [59] ZHANG S,ZHANG S,HUANG T,et al.Speech emotion recognition using deep convolutional neural network and discriminant temporal pyramid matching[J].IEEE Transactions on Multimedia,2018,20(6):1576-1590. [60] NAM Y,LEE C.Cascaded convolutional neural network architecture for speech emotion recognition in noisy conditions[J].Sensors,2021,21(13):4399. [61] DEHAK N,KENNY P J,DEHAK R,et al.Front-end factor analysis for speaker verification[J].IEEE Transactions on Audio,Speech,and Language Processing,2010,19(4):788-798. [62] ZHANG T,WU J.Speech emotion recognition with i-vector feature and RNN model[C]//2015 IEEE China Summit and International Conference on Signal and Information Processing(ChinaSIP),2015:524-528. [63] HERACLEOUS P,MOHAMMAD Y,YONEYAMA A.Deep convolutional neural networks for feature extraction in speech emotion recognition[C]//International Conference on Human-Computer Interaction.Cham:Springer,2019:117-132. [64] WANG J,XUE M,CULHANE R,et al.Speech emotion recognition with dual-sequence LSTM architecture[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP),2020:6474-6478. [65] 赵小蕾,毛启容,詹永照.融合功能性副语言的语音情感识别新方法[J].计算机科学与探索,2014,8(2):186-199. ZHAO X L,MAO Q R,ZHANG Y Z.New method of speech emotion recognition fusing functional paralanguages[J].Journal of Frontiers of Computer Science and Technology,2014,8(2):186-199. [66] HSU J,SU M,WU C,et al.Speech emotion recognition considering nonverbal vocalization in affective conversations[J].IEEE/ACM Transactions on Audio,Speech,and Language Processing,2021,29:1675-1686. [67] HAN J,ZHANG Z,SCHMITT M,et al.From hard to soft:towards more human-like emotion recognition by modelling the perception uncertainty[C]//Proceedings of the 25th ACM International Conference on Multimedia,2017:890-897. [68] ZHAO J,MAO X,CHEN L.Speech emotion recognition using deep 1D & 2D CNN LSTM networks[J].Biomedical Signal Processing and Control,2019,47:312-323. [69] ATILA O,?ENGüR A.Attention guided 3D CNN-LSTM model for accurate speech based emotion recognition[J].Applied Acoustics,2021,182:108260. [70] SABOUR S,FROSST N,HINTON G E.Dynamic routing between capsules[J].arXiv:1710.09829,2017. [71] WU X,LIU S,CAO Y,et al.Speech emotion recognition using capsule networks[C]//ICASSP 2019-2019 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP),2019:6695-6699. [72] ZHONG X,LIU J,LI L,et al.An emotion classification algorithm based on SPT-CapsNet[J].Neural Computing and Applications,2020,32(7):1823-1837. [73] SHAHIN I,HINDAWI N,NASSIF A B,et al.Novel dual-channel long short-term memory compressed capsule networks for emotion recognition[J].Expert Systems with Applications,2022,188:116080. [74] DENG J,ZHANG Z,EYBEN F,et al.Autoencoder-based unsupervised domain adaptation for speech emotion recognition[J].IEEE Signal Processing Letters,2014,21(9):1068-1072. [75] ESKIMEZ S E,DUAN Z,HEINZELMAN W.Unsupervised learning approach to feature analysis for automatic speech emotion recognition[C]//2018 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP),2018:5099-5103. [76] LATIF S,RANA R,QADIR J,et al.Variational autoencoders for learning latent representations of speech emotion:a preliminary study[J].arXiv:1712.08708,2017. [77] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Advances in Neural Information Processing Systems,2017:5998-6008. [78] WANG X,WANG M,QI W,et al.A Novel end-to-end speech emotion recognition network with stacked transformer layers[C]//ICASSP 2021-2021 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP),2021:6289-6293. [79] 杜静,唐曼婷,赵力.基于线性注意力和类Transformer模型的语音情感识别[J].东南大学学报(英文版),2021,37(2):164-170. DU J,TANG M T,ZHAO L.Transformer-like model with linear attention for speech emotion recognition[J].Journal of Southeast University(English Edition),2021,37(2):164-170. [80] CHEN W,XING X,XU X,et al.Key-sparse transformer with cascaded cross-attention block for multimodal speech emotion recognition[J].arXiv:2106.11532,2021. [81] LI L,ZHAO Y,JIANG D,et al.Hybrid deep neural network—hidden markov model(DNN-HMM) based speech emotion recognition[C]//2013 Humaine Association Conference on Affective Computing and Intelligent Interaction,2013:312-317. [82] SUN L,ZOU B,FU S,et al.Speech emotion recognition based on DNN-decision tree SVM model[J].Speech Communication,2019,115:29-37. [83] SCHULLER B,VLASENKO B,EYBEN F,et al.Cross-corpus acoustic emotion recognition:variances and strategies[J].IEEE Transactions on Affective Computing,2010,1(2):119-131. [84] 宋鹏,郑文明,赵力.基于特征迁移学习方法的跨库语音情感识别[J].清华大学学报(自然科学版),2016,56(11):1179-1183. SONG P,ZHENG W M,ZHAO L.Cross-corpus speech emotion recognition based on a feature transfer learning method[J].Journal of Tsinghua University(Science and Technology),2016,56(11):1179-1183. [85] ZONG Y,ZHENG W,ZHANG T,et al.Cross-corpus speech emotion recognition based on domain-adaptive least-squares regression[J].IEEE Signal Processing Letters,2016,23(5):585-589. [86] LATIF S,RANA R,YOUNIS S,et al.Transfer learning for improving speech emotion classification accuracy[J].arXiv:1801.06353,2018. [87] GANIN Y,USTINOVA E,AJAKAN H,et al.Domain-adversarial training of neural networks[J].The Journal of Machine Learning Research,2016,17(1):1996-2030. [88] ABDELWAHAB M,BUSSO C.Domain adversarial for acoustic emotion recognition[J].IEEE/ACM Transactions on Audio,Speech,and Language Processing,2018,26(12):2423-2435. [89] AHN Y,LEE S J,SHIN J W.Cross-corpus speech emotion recognition based on few-shot learning and domain adaptation[J].IEEE Signal Processing Letters,2021,28:1190-1194. [90] SAHU S,GUPTA R,ESPY-WILSON C.Modeling feature representations for affective speech using generative adversarial networks[J].IEEE Transactions on Affective Computing,2020. [91] LI H C,PAN T,LEE M H,et al.Make patient consultation warmer:a clinical application for speech emotion recognition[J].Applied Sciences,2021,11(11):4782. [92] 秦海波,白延强,吴斌,等.载人航天飞行中的情绪研究进展[J].航天医学与医学工程,2012,25(4):302-306. QIN H B,BAI Y Q,WU B,et al.Progress of study on emotion in manned spaceflight[J].Space Medicine & Medical Engineering,2012,25(4):302-306. [93] LI W,ZHANG Y,FU Y.Speech emotion recognition in e-learning system based on affective computing[C]//Third International Conference on Natural Computation(ICNC 2007),2007:809-813. [94] LEE C M,NARAYANAN S S.Toward detecting emotions in spoken dialogs[J].IEEE Transactions on Speech and Audio Processing,2005,13(2):293-303. [95] NAKATSU R,NICHOLSON J,TOSA N.Emotion recognition and its application to computer agents with spontaneous interactive capabilities[C]//Proceedings of the Seventh ACM International Conference on Multimedia(Part 1),1999:343-351. [96] HOSSAIN M S,MUHAMMAD G,SONG B,et al.Audio-visual emotion-aware cloud gaming framework[J].IEEE Transactions on Circuits and Systems for Video Technology,2015,25(12):2105-2118. [97] 王晶晶,黄如.基于宽深学习网络的音乐情感识别[J].华东理工大学学报(自然科学版),2022,48(3):373-380. WANG J J,HUANG R.Music emotion recognition based on the broad and deep learning network[J].Journal of East China University of Science and Technolog(Natural Science Edtion),2022,48(3):373-380. [98] MOUTTI M,SOFIA E,PANAGIOTIS K,et al.A dataset for speech emotion recognition in greek theatrical plays[J].arXiv:2203.15568,2022. [99] TAN L,YU K,LIN L,et al.Speech emotion recognition enhanced traffic efficiency solution for autonomous vehicles in a 5G-enabled space-air-ground integrated intelligent transportation system[J].IEEE Transactions on Intelligent Transportation Systems,2021:1-13. [100] 赵立,梁瑞宇,魏昕,等.语音信号处理[M].3版.北京:机械工业出版社,2016:232-235. ZHAO L,LIANG R Y,WEI X,et al.Speech signal processing[M].3rd ed.Beijing:China Machine Progress,2016:232-235. [101] RAMAKRISHNAN S,El EMARY I M M.Speech emotion recognition approaches in human computer interaction[J].Telecommunication Systems,2013,52(3):1467-1478. [102] CHANG Y,LARIDI S,REN Z,et al.Robust federated learning against adversarial attacks for speech emotion recognition[J].arXiv:2203.04696,2022. |
[1] | 罗向龙, 郭凰, 廖聪, 韩静, 王立新. 时空相关的短时交通流宽度学习预测模型[J]. 计算机工程与应用, 2022, 58(9): 181-186. |
[2] | 阿里木·赛买提, 斯拉吉艾合麦提·如则麦麦提, 麦合甫热提, 艾山·吾买尔, 吾守尔·斯拉木, 吐尔根·依不拉音. 神经机器翻译面对句长敏感问题的研究[J]. 计算机工程与应用, 2022, 58(9): 195-200. |
[3] | 陈一潇, 阿里甫·库尔班, 林文龙, 袁旭. 面向拥挤行人检测的CA-YOLOv5[J]. 计算机工程与应用, 2022, 58(9): 238-245. |
[4] | 方义秋, 卢壮, 葛君伟. 联合RMSE损失LSTM-CNN模型的股价预测[J]. 计算机工程与应用, 2022, 58(9): 294-302. |
[5] | 高广尚. 深度学习推荐模型中的注意力机制研究综述[J]. 计算机工程与应用, 2022, 58(9): 9-18. |
[6] | 吉梦, 何清龙. AdaSVRG:自适应学习率加速SVRG[J]. 计算机工程与应用, 2022, 58(9): 83-90. |
[7] | 石颉, 袁晨翔, 丁飞, 孔维相. SAR图像建筑物目标检测研究综述[J]. 计算机工程与应用, 2022, 58(8): 58-66. |
[8] | 熊风光, 张鑫, 韩燮, 况立群, 刘欢乐, 贾炅昊. 改进的遥感图像语义分割研究[J]. 计算机工程与应用, 2022, 58(8): 185-190. |
[9] | 杨锦帆, 王晓强, 林浩, 李雷孝, 杨艳艳, 李科岑, 高静. 深度学习中的单阶段车辆检测算法综述[J]. 计算机工程与应用, 2022, 58(7): 55-67. |
[10] | 王斌, 李昕. 融合动态残差的多源域自适应算法研究[J]. 计算机工程与应用, 2022, 58(7): 162-166. |
[11] | 谭暑秋, 汤国放, 涂媛雅, 张建勋, 葛盼杰. 教室监控下学生异常行为检测系统[J]. 计算机工程与应用, 2022, 58(7): 176-184. |
[12] | 张美玉, 刘跃辉, 侯向辉, 秦绪佳. 基于卷积网络的灰度图像自动上色方法[J]. 计算机工程与应用, 2022, 58(7): 229-236. |
[13] | 张壮壮, 屈立成, 李翔, 张明皓, 李昭璐. 基于时空卷积神经网络的数据缺失交通流预测[J]. 计算机工程与应用, 2022, 58(7): 259-265. |
[14] | 许杰, 祝玉坤, 邢春晓. 基于深度强化学习的金融交易算法研究[J]. 计算机工程与应用, 2022, 58(7): 276-285. |
[15] | 汪晶, 王恺, 严迎建. 基于条件生成对抗网络的侧信道攻击技术研究[J]. 计算机工程与应用, 2022, 58(6): 110-117. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||