计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (21): 53-66.DOI: 10.3778/j.issn.1002-8331.2204-0053
张瑞,朱天军,邹志亮,宋瑞
出版日期:
2022-11-01
发布日期:
2022-11-01
ZHANG Rui, ZHU Tianjun, ZOU Zhiliang, SONG Rui
Online:
2022-11-01
Published:
2022-11-01
摘要: 由于疲劳驾驶导致的交通事故占比逐年上涨,引起了研究人员的广泛关注。目前疲劳驾驶检测的研究受限于科技水平、环境、道路等各种因素的影响,导致疲劳驾驶检测技术难以进一步发展。介绍了近10年内驾驶员疲劳驾驶检测方法的最新进展。阐述并回顾了主动检测法和被动检测法两大类。根据两大类检测方法各自不同的特征进行细致的分类。进一步分析了各类疲劳驾驶检测方法的优势和局限,同时对主动检测法中基于面部特征的检测方法近3年内所使用的检测算法进行了分析和总结。归纳了各类疲劳驾驶检测方法存在的不足,同时提出疲劳检测领域未来的研究趋势,为研究人员进一步的研究提供新的思路。
张瑞, 朱天军, 邹志亮, 宋瑞. 驾驶员疲劳驾驶检测方法研究综述[J]. 计算机工程与应用, 2022, 58(21): 53-66.
ZHANG Rui, ZHU Tianjun, ZOU Zhiliang, SONG Rui. Review of Research on Driver Fatigue Driving Detection Methods[J]. Computer Engineering and Applications, 2022, 58(21): 53-66.
[1] 李都厚,刘群,袁伟,等.疲劳驾驶与交通事故关系[J].交通运输工程学报,2010,10(2):104-109. LI D H,LIU Q,YUAN W,et al.Relationship between fatigue driving and traffic accident[J].Journal of Traffic and Transportation Engineering,2010,10(2):104-109. [2] KHUMPISUTH O,CHOTCHINASRI T,KOSHAKOSAI V,et al.Driver drowsiness detection using eye-closeness detection[C]//2016 12th International Conference on Signal-Image Technology & Internet-Based Systems(SITIS),2016:661-668. [3] KOH S,CHO B R,LEE J,et al.Driver drowsiness detection via PPG biosignals by using multimodal head support[C]//2017 4th International Conference on Control,Decision and Information Technologies(CoDIT),2017:383-388. [4] HOTTA Y,ITO K.EMG-based detection of muscle fatigue during low-level isometric contraction:effects of electrode configuration and blood flow restriction[C]//2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society,2011:3877-3879. [5] ZHANG Y Q,ZHENG W L,LU B L.Transfer components between subjects for EEG-based driving fatigue detection[C]//International Conference on Neural Information Processing.Cham:Springer,2015:61-68. [6] LI M,ZHANG C,YANG J F.An EEG-based method for detecting drowsy driving state[C]//2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery,2010:2164-2167. [7] 周展鹏,孔万增,王奕直,等.基于心电和脑电的驾驶疲劳检测研究[J].杭州电子科技大学学报,2014,34(3):25-28. ZHOU Z P,KONG W Z,WANG Y Z,et al.ECG and EEG based detection of driver fatigue[J].Journal of Hangzhou Dianzi University,2014,34(3):25-28. [8] LAL S K L,CRAIG A.A critical review of the psychophysiology of driver fatigue[J].Biological Psychology,2001,55(3):173-194. [9] JIANG K,LING F,FENG Z,et al.Why do drivers continue driving while fatigued?An application of the theory of planned behaviour[J].Transportation Research Part A:Policy and Practice,2017,98:141-149. [10] BENER A,YILDIRIM E,?ZKAN T,et al.Driver sleepiness,fatigue,careless behavior and risk of motor vehicle crash and injury:population based case and control study[J].Journal of Traffic and Transportation Engineering(English Edition),2017,4(5):496-502. [11] NOUGHABI M G,SADEGHI A,MOGHADDAM A M,et al.Fatigue risk management:assessing and ranking the factors affecting the degree of fatigue and sleepiness of heavy-vehicle drivers using TOPSIS and statistical analyses[J].Iranian Journal of Science and Technology,Transactions of Civil Engineering,2020,44(4):1345-1357. [12] 杜振君.基于工效学的某汽车总装车间叉车司机疲劳评估研究[D].沈阳:沈阳工业大学,2020. DU Z J.Study on fatigue assessment of forklift driver in ageneral a ssembly workshop based on ergonomics[D].Shenyang:Shenyang University of Technology,2020. [13] LEE S,KIM J K.Factors contributing to the risk of airline pilot fatigue[J].Journal of Air Transport Management,2018,67:197-207. [14] FILTNESS A J,NAWEED A.Causes,consequences and counter measures to driver fatigue in the rail industry:the train driver perspective[J].Applied Ergonomics,2017,60:12-21. [15] 李响,徐玉萍,章海亮.机车司机驾驶疲劳风险动态量化评价研究[J].中国安全科学学报,2017,27(2):18-23. LI X,XU Y P,ZHANG H L.A study on dynamic quantitative evaluation of train driver’s fatigue risk[J].China Safety Science Journal,2017,27(2):18-23. [16] MOLLICONE D,KAN K,MOTT C,et al.Predicting performance and safety based on driver fatigue[J].Accident Analysis & Prevention,2019,126:142-145. [17] LI M K,YU J J,MA L,et al.Modeling and mitigating fatigue-related accident risk of taxi drivers[J].Accident Analysis & Prevention,2019,123:79-87. [18] POMERLEAU D.RALPH:rapidly adapting lateral position handler[C]//Proceedings of the Intelligent Vehicles’95,1995:506-511. [19] 郭思强,滕靖,郭旭健,等.基于车辆行驶数据的营运车驾驶员疲劳驾驶监控研究[C]//2014第九届中国智能交通年会,2014:91-102. GUO S Q,TENG J,GUO X J,et al.Research on fatigue driving of commercial vehicle drivers based on multi-source real data[C]//Proceedings of the 9th China Intelligent Transportation Annual Conference,2014:91-102. [20] 黄皓.基于驾驶操作及车辆状态的疲劳驾驶行为检测研究[D].南京:东南大学,2016. HUANG H.Fatigue driving detection based on driver behavior and vehicle state[D].Nanjing:Southeast University,2016. [21] 蔡素贤,杜超坎,周思毅,等.基于车辆运行数据的疲劳驾驶状态检测[J].交通运输系统工程与信息,2020,20(4):77-82. CAI S X,DU C K,ZHOU S Y,et al.Fatigue driving state detection based on vehicle running data[J].Journal of Transportation Systems Engineering and Information Technology,2020,20(4):77-82. [22] RIERA L,OZCAN K,MERICKEL J,et al.Detecting and tracking unsafe lane departure events for predicting driver safety in challenging naturalistic driving data[C]//2020 IEEE Intelligent Vehicles Symposium(IV),2020:238-245. [23] CHEN L W,CHEN H M.Driver behavior monitoring and warning with dangerous driving detection based on the internet of vehicles[J].IEEE Transactions on Intelligent Transportation Systems,2020,22(11):7232-7241. [24] 张希波,成波,冯睿嘉.基于方向盘操作的驾驶人疲劳状态实时检测方法[J].清华大学学报(自然科学版),2010,50(7):1072-1076. ZHANG X B,CHENG B,FENG R J.Real-time detection of driver drowsiness based on steering performance[J].Journal of Tsinghua University(Science and Technology),2010,50(7):1072-1076. [25] 沙春发,李瑞,张明明.基于方向盘握力的疲劳驾驶检测研究[J].科学技术与工程,2016,16(30):299-304. SHA C F,LI R,ZHANG M M.Detecting fatigue driving based on steering wheel grip force[J].Science Technology and Engineering,2016,16(30):299-304. [26] MCDONALD A D,LEE J D,SCHWARZ C,et al.A contextual and temporal algorithm for driver drowsiness detection[J].Accident Analysis & Prevention,2018,113:25-37. [27] LI Z,CHEN L,NIE L,et al.A novel learning model of driver fatigue features representation for steering wheel angle[J].IEEE Transactions on Vehicular Technology,2021,71(1):269-281. [28] LI R,CHEN Y V,ZHANG L.A method for fatigue detection based on driver’s steering wheel grip[J].International Journal of Industrial Ergonomics,2021,82:103083. [29] 彭军强,吴平东,殷罡.疲劳驾驶的脑电特性探索[J].北京理工大学学报,2007,27(7):585-589. PENG J Q,WU P D,YIN G.Explorating the characters of electroencephalogram for fatigued drivers[J].Transactions of Beijing Institute of Technology,2007,27(7):585-589. [30] LAL S K L,CRAIG A.Driver fatigue:electroencephalography and psychological assessment[J].Psychophysiology,2002,39(3):313-321. [31] HOUSHMAND S,KAZEMI R,SALMANZADEH H.A novel convolutional neural network method for subject-independent driver drowsiness detection based on single-channel data and EEG alpha spindles[J].Proceedings of the Institution of Mechanical Engineers,Part H:Journal of Engineering in Medicine,2021,235(9):1069-1078. [32] JEONG J H,YU B W,LEE D H,et al.Classification of drowsiness levels based on a deep spatio-temporal convolutional bidirectional LSTM network using electroencephalography signals[J].Brain Sciences,2019,9(12):348. [33] ZOU S,QIU T,HUANG P,et al.Constructing multi-scale entropy based on the empirical mode decomposition(EMD) and its application in recognizing driving fatigue[J].Journal of Neuroscience Methods,2020,341:108691. [34] CHINARA S.Automatic classification methods for detecting drowsiness using wavelet packet transform extracted time-domain features from single-channel EEG signal[J].Journal of Neuroscience Methods,2021,347:108927. [35] LIU Q,LIU Y,CHEN K,et al.Research on channel selection and multi-feature fusion of EEG signals for mental fatigue detection[J].Entropy,2021,23(4):457. [36] ZHENG W L,LU B L.A multimodal approach to estimating vigilance using EEG and forehead EOG[J].Journal of Neural Engineering,2017,14(2):026017. [37] GROMER M,SALB D,WALZER T,et al.ECG sensor for detection of driver’s drowsiness[J].Procedia Computer Science,2019,159:1938-1946. [38] 徐礼胜,张闻勖,庞宇轩,等.基于短时心电信号的疲劳驾驶检测算法[J].东北大学学报(自然科学版),2019,40(7):937-941. XU L S,ZHANG W X,PANG Y X,et al.Driver drowsiness detection algorithm using short-term ECG signals[J].Journal of Northeastern University(Natural Science),2019,40(7):937-941. [39] MURUGAN S,SELVARAJ J,SAHAYADHAS A.Detection and analysis:driver state with electrocardiogram(ECG)[J].Physical and Engineering Sciences in Medicine,2020,43(2):525-537. [40] LEE H,LEE J,SHIN M.Using wearable ECG/PPG sensors for driver drowsiness detection based on distinguishable pattern of recurrence plots[J].Electronics,2019,8(2):192. [41] SALVATI L,D’AMORE M,FIORENTINO A,et al.On-road detection of driver fatigue and drowsiness during medium-distance journeys[J].Entropy,2021,23(2):135. [42] WANG H.Detection and alleviation of driving fatigue based on EMG and EMS/EEG using wearable sensor[C]//Proceedings of the 5th EAI International Conference on Wireless Mobile Communication and Healthcare,2015:155-157. [43] FAN Y,GU F,WANG J,et al.SafeDriving:an effective abnormal driving behavior detection system based on EMG signals[J].IEEE Internet of Things Journal,2021,9(14):12338-12350. [44] WIERWILLE W,KNIPLING R.Vehicle-based drowsy driver detection:current status and future prospects[C]//Proceedings of the IVHS America Conference,1994:245-256. [45] DINGES D F,GRACE R.PERCLOS:a valid psychophysiological measure of alertness as assessed by psychomotor vigilance[D].US Department of Transportation.Federal Highway Administration,Publication Number FHWA-MCRT-98-006,1998. [46] TAO H,ZHANG G,ZHAO Y,et al.Real-time driver fatigue detection based on face alignment[C]//Ninth International Conference on Digital Image Processing(ICDIP 2017),2017:6-11. [47] 潘志庚,刘荣飞,张明敏.基于模糊综合评价的疲劳驾驶检测算法研究[J].软件学报,2019,30(10):2954-2963. PAN Z G,LIU R F,ZHANG M M.Research on fatigue driving detection algorithm based on fuzzy comprehensive evaluation[J].Journal of Software,2019,30(10):2954-2963. [48] ZHUANG Q,KEHUA Z,WANG J,et al.Driver fatigue detection method based on eye states with pupil and iris segmentation[J].IEEE Access,2020,8:173440-173449. [49] BAKHEET S,AL-HAMADI A.A framework for instantaneous driver drowsiness detection based on improved HOG features and Na?ve Bayesian classification[J].Brain Sciences,2021,11(2):240. [50] WANG R B,GOU L,TONG B L,et al.Monitoring mouth movement for driver fatigue or distraction with one camera[C]//The 7th International IEEE Conference on Intelligent Transportation Systems(IEEE Cat.No.04TH8749),2004:314-319. [51] ANITHA C,VENKATESHA M K,ADIGA B S.A two fold expert system for yawning detection[J].Procedia Computer Science,2016,92:63-71. [52] JIE Z,MAHMOUD M,STAFFORD-FRASER Q,et al.Analysis of yawning behaviour in spontaneous expressions of drowsy drivers[C]//2018 13th IEEE International Conference on Automatic Face & Gesture Recognition(FG 2018),2018:571-576. [53] ADHINATA F D,RAKHMADANI D P,WIJAYANTO D.Fatigue detection on face image using FaceNet algorithm and K-nearest neighbor classifier[J].Journal of Information Systems Engineering and Business Intelligence,2021,7(1):22-30. [54] 李勇达,张超,孟令君.基于头部姿态特征的列车司机疲劳驾驶检测系统研究[J].交通信息与安全,2014,32(5):114-119. LI Y D,ZHANG C,MENG L J.A fatigue driving detection system for train driver based on head pose features[J].Journal of Transport Information and Safety,2014,32(5):114-119. [55] RUIZ N,CHONG E,REHG J M.Fine-grained head pose estimation without keypoints[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,2018:2074-2083. [56] ANSARI S,NAGHDY F,DU H,et al.Driver mental fatigue detection based on head posture using new modified reLU-BiLSTM deep neural network[J].IEEE Transactions on Intelligent Transportation Systems,2021. [57] ZHANG N,ZHANG H,HUANG J.Driver fatigue state detection based on facial key points[C]//2019 6th International Conference on Systems and Informatics(ICSAI),2019:144-149. [58] 刘鹏,江朝晖,熊进,等.用于驾驶疲劳检测的人眼定位及状态判别算法[J].计算机工程与应用,2010,46(24):185-188. LIU P,JIANG Z H,XIONG J,et al.Algorithm of eye localization and eye state recognition in driving fatigue detection[J].Computer Engineering and Applications,2010,46(24):185-188. [59] YOU F,LI X,GONG Y,et al.A real-time driving drowsiness detection algorithm with individual differences consideration[J].IEEE Access,2019,7:179396-179408. [60] ZHANG F,WANG F.Exercise fatigue detection algorithm based on video image information extraction[J].IEEE Access,2020,8:199696-199709. [61] LIU W,QIAN J,YAO Z,et al.Convolutional two-stream network using multi-facial feature fusion for driver fatigue detection[J].Future Internet,2019,11(5):115. [62] JI Y,WANG S,ZHAO Y,et al.Fatigue state detection based on multi-index fusion and state recognition network[J].IEEE Access,2019,7:64136-64147 [63] ZHAO Z,ZHOU N,ZHANG L,et al.Driver fatigue detection based on convolutional neural networks using EM-CNN[J].Computational Intelligence and Neuroscience,2020. [64] LI K,GONG Y,REN Z.A fatigue driving detection algorithm based on facial multi-feature fusion[J].IEEE Access,2020,8:101244-101259. [65] YOU F,GONG Y,TU H,et al.A fatigue driving detection algorithm based on facial motion information entropy[J].Journal of Advanced Transportation,2020. [66] LIU Z,PENG Y,HU W.Driver fatigue detection based on deeply-learned facial expression representation[J].Journal of Visual Communication and Image Representation,2020,71:102723. [67] 张伟,黄炜,罗大庸.基于多特征量贝叶斯融合的驾驶疲劳识别[J].计算机工程与应用,2012,48(33):244-248. ZHANG W,HUANG W,LUO D Y.Recognition of driver fatigue using multi-feature fusion by Bayesian network[J].Computer Engineering and Applications,2012,48(33):244-248. [68] ZHU T,ZHANG C,WU T,et al.Research on a real-time driver fatigue detection algorithm based on facial video sequences[J].Applied Sciences,2022,12(4):2224. [69] HONG S,KWON H,CHOI S H,et al.Intelligent system for drowsiness recognition based on ear canal electroencephalography with photoplethysmography and electrocardiography[J].Information Sciences,2018,453:302-322. [70] VARDHAN V V S,REDDY N R K,SURYA K J,et al.Driver’s drowsiness detection based on facial multi-feature fusion[C]//Journal of Physics:Conference Series,2021,1998(1):012034. [71] JIA H,XIAO Z,JI P.Fatigue driving detection based on deep learning and multi-index fusion[J].IEEE Access,2021,9:147054-147062. [72] DU G,LI T,LI C,et al.Vision-based fatigue driving recognition method integrating heart rate and facial features[J].IEEE Transactions on Intelligent Transportation Systems,2020,22(5):3089-3100. [73] LI K,WANG S,DU C,et al.Accurate fatigue detection based on multiple facial morphological features[J].Journal of Sensors,2019. [74] ZHAO Y,XIE K,ZOU Z,et al.Intelligent recognition of fatigue and sleepiness based on InceptionV3-LSTM via multi-feature fusion[J].IEEE Access,2020,8:144205-144217. |
[1] | 涂德浴, 刘坤, 朱庆, 刘庆运. 基于机器视觉的钢管壁厚在线检测方法研究[J]. 计算机工程与应用, 2022, 58(16): 249-256. |
[2] | 沈新烽,姜平,周根荣. 改进SSD算法在零部件检测中的应用研究[J]. 计算机工程与应用, 2021, 57(7): 257-262. |
[3] | 戴睿,嵩天. 自适应伪随机序列混合网络隐蔽通道构建方法[J]. 计算机工程与应用, 2021, 57(17): 122-129. |
[4] | 吴士力,唐振民,刘永. 多特征融合的随机森林疲劳驾驶识别算法[J]. 计算机工程与应用, 2020, 56(20): 212-219. |
[5] | 李明熹,林正奎,曲毅. 计算机视觉下的车辆目标检测算法综述[J]. 计算机工程与应用, 2019, 55(24): 20-28. |
[6] | 崔丽群,张平,贺情杰,鲁浩. 对比度和细节增强显著性检测方法研究[J]. 计算机工程与应用, 2019, 55(23): 200-208. |
[7] | 刘海燕,张 钰,毕建权,邢 萌. 基于分布式及协同式网络入侵检测技术综述[J]. 计算机工程与应用, 2018, 54(8): 1-6. |
[8] | 方楷强,王 靖. 基于非负矩阵分解的托攻击检测算法[J]. 计算机工程与应用, 2017, 53(10): 150-154. |
[9] | 张维琪,樊 斐. 自适应SSDA图像匹配并行算法设计与实现[J]. 计算机工程与应用, 2014, 50(20): 64-67. |
[10] | 黄 珂,薛月菊,陈 瑶,陈汉鸣,李鸿生. QR码图像几何校正算法的研究[J]. 计算机工程与应用, 2014, 50(20): 192-196. |
[11] | 邢 堃,韩汉光,吴怡之. 基于机器视觉的印刷标签检测系统的改进[J]. 计算机工程与应用, 2014, 50(11): 197-201. |
[12] | 兰 婷,普杰信. 视频图像中的视觉疲劳实时检测方法研究[J]. 计算机工程与应用, 2012, 48(35): 147-150. |
[13] | 黄 波1,张晓敏1,翟临博2. IEEE802.11基础型网络中隐藏站点检测[J]. 计算机工程与应用, 2012, 48(32): 72-75. |
[14] | 李忠海,王 莉,崔建国. 基于Camshift和Particle Filter的小目标跟踪算法[J]. 计算机工程与应用, 2011, 47(9): 192-195. |
[15] | 钟 美,张丽萍,刘东升. 基于XML的C代码抄袭检测算法[J]. 计算机工程与应用, 2011, 47(8): 215-218. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||