计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (14): 27-39.DOI: 10.3778/j.issn.1002-8331.2111-0580
于强,林民,李艳玲
YU Qiang, LIN Min, LI Yanling
摘要: 关键词生成是自然语言处理中一项经典但具有挑战性的任务,需要从文档中自动生成一组具有代表性和特征性的词语。基于深度学习的序列到序列模型在这项任务中取得了显著的效果,弥补了以往关键词抽取存在的一个严重缺陷:无法产生不存在于原文中的关键词。由于其产生的结果更切合实际,关键词生成方法逐渐超越了以往的抽取方法,成为了关键词提取任务的主流方法。介绍了关键词提取的发展历程以及关键词生成任务的主要数据集,对基础设计采用序列到序列模型的关键词生成方法进行了分类梳理,分析其原理和优缺点。概述了关键词生成任务的评价方法,并对其未来研究重点进行了展望。