计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (14): 40-50.DOI: 10.3778/j.issn.1002-8331.2203-0318
李扬,杨海涛,孔卓,张长弓,王晋宇
出版日期:
2022-07-15
发布日期:
2022-07-15
LI Yang, YANG Haitao, KONG Zhuo, ZHANG Changgong, WANG Jinyu
Online:
2022-07-15
Published:
2022-07-15
摘要: 红外与可见光图像融合作为一种针对增强技术被广泛应用,融合技术通过提取可见光和红外各自的显著特征,并将其保留在融合图像中,提高了后续高级视觉任务的效率或人工识别。在吸收国内外众多学者的研究的基础上,通过研究归纳,阐述了图像融合的定义与分类,系统性地总结了红外与可见光融合算法,分析了图像融合算法进一步发展的方向。
李扬, 杨海涛, 孔卓, 张长弓, 王晋宇. 像素级红外与可见光图像融合方法综述[J]. 计算机工程与应用, 2022, 58(14): 40-50.
LI Yang, YANG Haitao, KONG Zhuo, ZHANG Changgong, WANG Jinyu. Review of Pixel-Level Infrared and Visible Image Fusion Methods[J]. Computer Engineering and Applications, 2022, 58(14): 40-50.
[1] 郭雷,李晖晖,鲍永生.图像融合[M].北京:电子工业出版社,2008. GUO L,LI H H,BAO Y S.Image fusion[M].Beijing:Publishing House of Electronics Industry,2008. [2] 周涛,刘珊,董雅丽,等.多尺度变换像素级医学图像融合:研究进展、应用和挑战[J].中国图象图形学报,2021,26(9):2094-2110. ZHOU T,LIU S,DONG Y L,et al.Research on pixel-level image fusion based on multi-scale transformation:progress application and challenges[J].Journal of Image and Graphics,201,26(9):2094-2110. [3] 沈英,黄春红,黄峰,等.红外与可见光图像融合技术的研究进展[J].红外与激光工程,2021,50(9):152-169. SHEN Y,HUANG C H,HUANG F,et al.Research progress of infrared and visible image fusion technology[J].Infrared and Laser Engineering,2021,50(9):152-169. [4] 王耀南,李树涛.多传感器信息融合及其应用综述[J].控制与决策,2001(5):518-522. WANG Y N,LI S T.Multisensor information fusion and its application:a survey[J].Control and Decision,2001(5):518-522. [5] 王海晖,彭嘉雄,吴巍,等.多源遥感图像融合效果评价方法研究[J].计算机工程与应用,2003,39(25):33-37. WANG H H,PENG J X,WU W,et al.A study of evaluation methods on performance of the multi-source remote sensing image fusion[J].Computer Engineering and Applications,2003,39(25):33-37. [6] ZHANG X,YE P,XIAO G.VIFB:a visible and infrared image fusion benchmark[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW),2020:468-478. [7] 刘冬梅.图像拼接算法研究[D].西安:西安电子科技大学,2008. LIU D M.Research on image mosaic algorithm[D].Xi’an:Xidian University,2008. [8] TOET A,HOGERVORST M A.Progress in color night vision[J].Optical Engineering,2012,51(1):010901. [9] ZHANG M M,CHOI J,DANIILIDIS K,et al.VAIS:a dataset for recognizing maritime imagery in the visible and infrared spectrums[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops(CVPRW),2015. [10] HWANG S,PARK J,KIM N,et al.Multispectral pedestrian detection:Benchmark dataset and baseline[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2013. [11] BURT P J,ADELSON E H.Merging images through pattern decomposition[C]//Applications of Digital Image Processing VIII,1984. [12] TOET A.Image fusion by a ratio of low-pass pyramid[J].Pattern Recognition Letters,1989,9(4):245-253. [13] BURT P J.A gradient pyramid basis for pattern-selective image fusion[C]//Processings of the Society for Information Display Conference,1992. [14] 陈锦,曾东.基于Spline金字塔的图像融合方法[J].实验科学与技术,2007(1):129-131. CHEN J,ZENG D.Image fusion algorithm based on spline pyramid[J].Experiment Science & Technology,2007(1):129-131. [15] 胡学龙,沈洁.一种基于中值金字塔的图像融合算法[J].微电子学与计算机,2008(9):165-167. HU X L,SHEN J.An algorithm on image fusion based on median pyramid[J].Microelectronics & Computer,2008(9):165-167. [16] 崔颢.基于方向可控金字塔的图像融合算法[J].航空计算技术,2011,41(4):24-27. CUI H.An image fusion algorithm based on steerable pyramid[J].Aeronautical Computing Technique,2011,41(4):24-27. [17] 刘斌,董迪,陈俊霖.基于方向性对比度金字塔的图像融合方法[J].量子电子学报,2017,34(4):405-413. LIU B,DONG D,CHEN J L.Image fusion method based on directional contrast pyramid[J].Chinese Journal of Quantum Electronics,2017,34(4):405-413. [18] KOU F,LI Z,WEN C,et al.Edge-preserving smoothing pyramid based multi-scale exposure fusion[J].Journal of Visual Communication and Image Representation,2018,53:235-244. [19] 刘斌,辛迦楠,谌文江,等.不可分拉普拉斯金字塔构造及其在多光谱图像融合中的应用[J].计算机应用,2019,39(2):564-570. LIU B,XIN J N,CHEN W J,et al.Construction of non-separable Laplacian pyramid and its application in multi-spectral image fusion[J].Journal of Computer Applications,2019,39(2):564-570. [20] MALLAT S G.A theory for multiresolution signal decomposition:the wavelet representation[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,1989,11(4):674-693. [21] LI H,MANJUNATH B S,MITRA S K.Multisensor image fusion using the wavelet transform[J].Graphical Models & Image Processing,1995,57(3):235-245. [22] 王亚杰,李殿起,徐心和.基于双树复小波变换彩色多聚焦图像融合方法[J].计算机工程与应用,2007,43(28):12-14. WANG Y J,LI D Q,XU X H.Color multi-focus image fusion method based on double tree complex wavelet transform[J].Computer Engineering and Applications,2007,43(28):12-14. [23] UYTTERHOEVEN G,BULTHEEL A.The red-black wavelet transform[C]//Proceedings of IEEE Benelux Signal Processing Symposium,1997. [24] KINGSBURY N.The dual-tree complex wavelet transform:a new technique for shift invariance and directional filters[C]//IEEE Digital Signal Processing Workshop,1998. [25] IOANNIDOU S,KARATHANASSI V.Investigation of the dual-tree complex and shift-invariant discrete wavelet transforms on quickbird image fusion[J].IEEE Geoscience and Remote Sensing Letters,2007,4:166-170. [26] LEE C S,LEE C K,YOO K Y.New lifting based structure for undecimated wavelet transform[J].Electronics Letters,2000,36(22):1894-1895. [27] PIELLA G.A general framework for multiresolution image fusion:from pixels to regions[J].Information Fusion,2003,4(4):259-280. [28] BAYRO-CORROCHANO E.The theory and use of the quaternion wavelet transform[J].Journal of Mathematical Imaging and Vision,2006,24(1):19-35. [29] CHAI P F,LUO X Q,ZHANG Z C.Image fusion using quaternion wavelet transform and multiple features[J].IEEE Access,2017,5:6724-6734. [30] 王卫星,曾基兵.冗余提升不可分离小波的图像融合方法[J].电子科技大学学报,2009,38(1):13-16. WANG W X,ZENG J B.Image fusion method for non-separable wavelet with redundant lifting[J].Journal of University of Electronic Science and Technology of China,2009,38(1):13-16. [31] GILLES J.Empirical wavelet transform[J].IEEE Transactions on Signal Processing,2013,61(16):3999-4010. [32] 李雄飞,宋璐,张小利.基于协同经验小波变换的遥感图像融合[J].吉林大学学报(工学版),2019,49(4):1307-1319. LI X F,SONG L,ZHANG X L.Remote sensing image fusion based on collaborative empirical wavelet transform[J].Journal of Jilin University(Engineering and Technology Edition),2019,49(4):1307-1319. [33] 宫睿,王小春.基于可协调经验小波变换的多聚焦图像融合[J].计算机工程与应用,2020,56(2):201-210. GONG R,WANG X C.Multi-focus image fusion based on harmonized empirical wavelet transform[J].Computer Engineering and Applications,2020,56(2):201-210. [34] CANDèS E J,DONOHO D L.Ridgelets:a key to higher-dimensional intermittency?[J].Philosophical Transactions of the Royal Society of London,Series A:Mathematical,Physical and Engineering Sciences,1999,357(1760):2495-2509. [35] CANDES E J.Ridgelets:theory and applications[R].Stanford University.Department of Statistics,1998. [36] CHOI M,KIM R Y,NAM M R,et al.Fusion of multispectral and panchromatic satellite images using the curvelet transform[J].IEEE Geoscience & Remote Sensing Letters,2005,2(2):136-140. [37] 张强,郭宝龙.一种基于Curvelet变换多传感器图像融合算法[J].光电子·激光,2006(9):1123-1127. ZHANG Q,GUO B L.Fusion of multisensor images based on the Curvelet transform[J].Journal of Optoelectronics·Laser,2006(9):1123-1127. [38] PENNEC E L,MALLAT S.Sparse geometric image representations with bandelets.[J].IEEE Transactions on Image Processing,2005,14(4):423-438. [39] 杨扬,戴明,周箩鱼,等.基于非下采样Bandelet变换的多聚焦图像融合[J].吉林大学学报(工学版),2014,44(2):525-530. YANG Y,DAI M,ZHOU L Y,et al.Multi-focus image fusion based on non-subsampled Bandelet transform[J].Journal of Jilin University(Engineering and Technology Edition),2014,44(2):525-530. [40] DA CUNHA A L,ZHOU J,DO M N.The nonsubsampled contourlet transform:theory,design,and applications[J].IEEE Transactions on Image Processing,2006,15(10):3089-3101. [41] GOYAL B,DOGRA A,KHOOND R,et al.An efficient medical assistive diagnostic algorithm for visualisation of structural and tissue details in CT and MRI fusion[J].Cognitive Computation,2021,13(6):1471-1483. [42] 裴高乐,史涛,李世星.NSCT与AR-PCNN相结合的医学图像融合研究[J/OL].激光杂志:1-7[2022-03-30]..http://kns.cnki.net/kcms/detail/50.1085.TN.20220301.1955.010.html. PEI G L,SHI T,LI S X.Research on medical image fusion based on NSCT and AR-PCNN[J].Laser Journal:1-7[2022-03-30].http://kns.cnki.net/kcms/detail/50.1085.TN.20220301.1955.010.html. [43] GUO K,LABATE D,et al.Optimally sparse multidimensional representation using shearlets[J].SIAM Journal on Mathematical Analysis,2007,39(1):298-318. [44] 王鸿闯.基于NSCT域的自适应阈值图像去噪算法研究[D].兰州:兰州交通大学,2018. WANG H C.Research on adaptive threshold image denoising algorithm based on NSCT domain[D].Lanzhou:Lanzhou Jiaotong University,2018. [45] EASLEY G,LABATE D,LIM W Q.Sparse directional image representations using the discrete shearlet transform[J].Applied and Computational Harmonic Analysis,2008,25(1):25-46. [46] WEI R,ZHU D,ZHAN W,et al.Infrared and visible image fusion based on RPCA and NSST[C]//2019 IEEE International Conference on Power,Intelligent Computing and Systems(ICPICS),2019:236-240. [47] KROMMWEH J.Tetrolet transform:a new adaptive Haar wavelet algorithm for sparse image representation[J].Journal of Visual Communication and Image Representation,2010,21(4):364-374. [48] 苑玉彬,彭静,沈瑜,等.基于Tetrolet变换的近红外与彩色可见光图像融合算法研究[J].红外技术,2020,42(3):223-230. YUAN Y B,PENG J,SHEN Y,et al.Research on near-infrared and color visible image fusion algorithm based on Tetrolet transform[J].Infrared Technology,2020,42(3):223-230. [49] CHAVAN S S,MAHAJAN A,TALBAR S N,et al.Nonsubsampled rotated complex wavelet transform(NSRCxWT) for medical image fusion related to clinical aspects in neurocysticercosis[J].Computers in Biology & Medicine,2016,81:64. [50] DOGAN H,BAYKAL E,EKINCI M,et al.A novel extended depth of field process based on nonsubsampled shearlet transform by estimating optimal range in microscopic systems[J].Optics Communications,2018,429:88-99. [51] CHENG B,JIN L,LI G.Adaptive fusion framework of infrared and visual image using saliency detection and improved dual-channel PCNN in the LNSST domain[J].Infrared Physics & Technology,2018,92:30-43. [52] 沈瑜,陈小朋,杨倩.多方向Laplacian能量和与tetrolet变换的图像融合[J].中国图象图形学报,2020,25(4):721-731. SHEN Y,CHEN X P,YANG Q.Multi-direction Laplacian energy and image fusion with tetrolet transform[J].Journal of Image and Graphics,2020,25(4):721-731. [53] CHENG B,JIN L,LI G.Adaptive fusion framework of infrared and visual image using saliency detection and improved dual-channel PCNN in the LNSST domain[J].Infrared Physics & Technology,2018,92:30-43. [54] MENG F,SONG M,GUO B,et al.Image fusion based on object region detection and non-subsampled contourlet transform[J].Computers & Electrical Engineering,2017,62:375-383. [55] AISHWARYA N,THANGAMMAL C B.Visible and infrared image fusion using DTCWT and adaptive combined clustered dictionary-ScienceDirect[J].Infrared Physics & Technology,2018,93:300-309. [56] CHENG B,JIN L,LI G.Adaptive fusion framework of infrared and visual image using saliency detection and improved dual-channel PCNN in the LNSST domain[J].Infrared Physics & Technology,2018,92:30-43. [57] CAI H,ZHUO L,CHEN X.Infrared and visible image fusion based on BEMSD and improved fuzzy set[J].Infrared Physics & Technology,2019,98:201-211. [58] LIU X,MEI W,DU H.Multi-modality medical image fusion based on image decomposition framework and nonsubsampled shearlet transform[J].Biomedical Signal Processing and Control,2018,40:343-350. [59] ULLAH H,ULLAH B,WU L,et al.Multi-modality medical images fusion based on local-features fuzzy sets and novel sum-modified-Laplacian in non-subsampled shearlet transform domain[J].Biomedical Signal Processing and Control,2020,57:101724. [60] DING W,BI D,HE L,et al.Infrared and visible image fusion method based on sparse features[J].Infrared Physics & Technology,2018,92:372-380. [61] MENG L,GUO X,LI H.MRI/CT fusion based on latent low rank representation and gradient transfer[J].Biomedical Signal Processing and Control,2019,53:101536. [62] VISHWAKARMA A,BHUYAN M K,IWAHORI Y.An optimized non-subsampled shearlet transform-based image fusion using Hessian features and unsharp masking[J].Journal of Visual Communication and Image Representation,2018,57:48-60. [63] ANANDHI D,VALLI S.An algorithm for multi-sensor image fusion using maximum a posteriori and nonsubsampled contourlet transform[J].Computers & Electrical Engineering,2017:139-152. [64] 刘斌,谌文江,辛迦楠.基于四通道不可分加性小波的多聚焦图像融合[J].计算机科学,2019,46(7):268-273. LIU B,CHEN W J,XIN J N.Multifocus image fusion based on four channel non-separable additive wavelet[J].Computer Science,2019,46(7):268-273. [65] CHENG B,JIN L,LI G.General fusion method for infrared and visual images via latent low-rank representation and local non-subsampled shearlet transform[J].Infrared Physics & Technology,2018,92:68-77. [66] LI H,WU X J.DenseFuse:a fusion approach to infrared and visible images[J].IEEE Transactions on Image Processing,2018,28(5):2614-2623. [67] HOU R.VIF-Net:an unsupervised framework for infrared and visible image fusion[J].IEEE Transactions on Computational Imaging,2020,6:640-651. [68] MA J,WEI Y,LIANG P,et al.FusionGAN:a generative adversarial network for infrared and visible image fusion[J].Information Fusion,2019,48:11-26. [69] MA J,XU H,JIANG J,et al.DDcGAN:a dual-discriminator conditional generative adversarial network for multi-resolution image fusion[J].IEEE Transactions on Image Processing,2020,29:4980-4995. [70] MA J,YU W,CHEN C,et al.Pan-GAN:an unsupervised pan-sharpening method for remote sensing image fusion[J].Information Fusion,2020,62:110-120. [71] MA J,ZHANG H,SHAO Z,et al.GANMcC:a generative adversarial network with multiclassification constraints for infrared and visible image fusion[J].IEEE Transactions on Instrumentation and Measurement,2020,70:5005014. [72] ZHANG H,MA J.SDNet:a versatile squeeze-and-decomposition network for real-time image fusion[J].International Journal of Computer Vision,2021:1-25. [73] MA J,TANG L,XU M,et al.STDFusionNet:an infrared and visible image fusion network based on salient target detection[J].IEEE Transactions on Instrumentation and Measurement,2021,70:1-13. [74] H LI,WU X J,DURRANI T.NestFuse:an infrared and visible image fusion architecture based on nest connection and spatial/channel attention models[J].IEEE Transactions on Instrumentation and Measurement,2020,69(12):9645-9656. [75] TANG L,YUAN J,MA J.Image fusion in the loop of high-level vision tasks:a semantic-aware real-time infrared and visible image fusion network[J].Information Fusion,2022,82:28-42. |
[1] | 李雨晨, 黄永东. 基于卷积神经网络模型的医学图像融合[J]. 计算机工程与应用, 2022, 58(15): 229-237. |
[2] | 董旭彬,赵清华. 改进Mask R-CNN在航空影像目标检测的研究应用[J]. 计算机工程与应用, 2021, 57(8): 133-144. |
[3] | 顾梅花,王苗苗,李立瑶,冯婧. 彩色图像多尺度融合灰度化算法[J]. 计算机工程与应用, 2021, 57(4): 209-215. |
[4] | 王长城,周冬明,刘琰煜,谢诗冬. 无监督深度学习模型的多聚焦图像融合算法[J]. 计算机工程与应用, 2021, 57(21): 209-215. |
[5] | 呼亚萍,孔韦韦,李萌,黄翠玲. 改进TV图像去噪模型的全景图像拼接算法[J]. 计算机工程与应用, 2021, 57(17): 203-209. |
[6] | 李广安,曹岩,岳晓新. 基于BEEMD分解的红外与可见光图像融合[J]. 计算机工程与应用, 2021, 57(14): 237-244. |
[7] | 曹军,陈鹤,张佳薇. 基于超分辨率的多聚焦图像融合算法研究[J]. 计算机工程与应用, 2020, 56(3): 180-186. |
[8] | 宫睿,王小春. 基于可协调经验小波变换的多聚焦图像融合[J]. 计算机工程与应用, 2020, 56(2): 201-210. |
[9] | 吴帆,高媛,秦品乐,王丽芳. 基于拉普拉斯金字塔和CNN的医学图像融合算法[J]. 计算机工程与应用, 2020, 56(15): 208-214. |
[10] | 李一菲,杨 燕,张国强. 基于补偿暗通道和透射率融合的图像去雾算法[J]. 计算机工程与应用, 2019, 55(3): 196-201. |
[11] | 余霆嵩,文元美,凌永权. 基于张量分解融合RGB-D图像的物体识别[J]. 计算机工程与应用, 2019, 55(2): 174-178. |
[12] | 李敏,苑贤杰,骆志丹,邱晓华. 基于改进引导滤波与DCPCNN的图像融合方法[J]. 计算机工程与应用, 2019, 55(19): 207-213. |
[13] | 王 烈,罗 文,陈俊鸿,秦伟萌. 自适应PCNN与信息提取的红外与可见光图像融合[J]. 计算机工程与应用, 2018, 54(4): 192-198. |
[14] | 付争方1,朱 虹2. 多尺度细节融合的多曝光高动态图像重建[J]. 计算机工程与应用, 2018, 54(24): 182-187. |
[15] | 刘 栋,聂仁灿,周冬明,侯瑞超,熊 磊. 结合NSST与GA参数优化PCNN图像融合[J]. 计算机工程与应用, 2018, 54(19): 158-163. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||