计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (19): 158-165.DOI: 10.3778/j.issn.1002-8331.2102-0221
代翔,孙海春,朱容辰,孙天杨
DAI Xiang, SUN Haichun, ZHU Rongchen, SUN Tianyang
摘要: 文本相似度分析是自然语言处理领域的核心任务,基于深度文本匹配模型进行文本相似度分析是当前研究该任务的主流思路。针对传统的MatchPyramid模型对文本特征提取的不足之处进行改进,提出了基于增强MatchPyramid模型进行文本相似度分析的方法。该方法在输入编码层加入多头自注意力机制和互注意力机制,同时对双注意力机制的输入词向量使用自编码器做降维处理,以降低模型的计算量。接着将双注意力机制的输出与原始词向量相连接,提升了词向量对文本关键信息的表征能力。最后将两个文本的词向量矩阵点积形成的单通道图映射到多个特征子空间形成了多通道图,使用密集连接的卷积神经网络对多通道图进行特征提取。实验结果表明,相比于传统的MatchPyramid模型,所提出的模型准确率提升了1.59个百分点,F1值提升了2.49个百分点。