计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (4): 185-187.DOI: 10.3778/j.issn.1002-8331.2011.04.051

• 图形、图像、模式识别 • 上一篇    下一篇

一种k-means聚类的案例检索算法

乔 丽,姜慧霖   

  1. 商丘师范学院 计算机科学系,河南 商丘 476000
  • 收稿日期:2009-08-28 修回日期:2009-11-16 出版日期:2011-02-01 发布日期:2011-02-01
  • 通讯作者: 乔 丽

Case retrieval algorithm based on k-means clustering

QIAO Li,JIANG Huilin   

  1. Department of Computer Science,Shangqiu Normal College,Shangqiu,Henan 476000,China
  • Received:2009-08-28 Revised:2009-11-16 Online:2011-02-01 Published:2011-02-01
  • Contact: QIAO Li

摘要: 针对CBR系统中案例检索算法存在的问题,根据k-means算法思想,将案例库进行聚类,在聚类基础上设计了一个案例检索算法。分析了样本案例的选取规则,重点论述了案例检索算法。根据实验结果表明,该方法能够有效地提高案例检索结果的召回率及案例检索效率。

关键词: 基于案例推理, 聚类, 目标案例, 相似度

Abstract: Aiming at the problems concerning case retrieval algorithm in the CBR system,this paper,in the light of the idea of the k-means algorithm,firstly clusteres the case database and then works out a case retrieval algorithm on the basis of the clustering of the case database.It analyzes the selecting principles of sample case,and mainly discusses the case retrieval algorithm.The results of experiment show that this algorithm can efficiently enhance the recall rate of the case retrieval outcomes and the efficiency of the case retrieval.

Key words: case-based reasoning, clustering, target case, similarity

中图分类号: