计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (4): 160-164.DOI: 10.3778/j.issn.1002-8331.2011.04.044
尚 丽
SHANG Li
摘要: 提出了一种改进的基于NIG(Normal Inverse Gaussian)密度和稳健主成分分析(PCA)的非负稀疏编码(NNSC)神经网络模型,该模型实质上实现了一个二阶段的学习过程。并利用这个模型成功地建模了视觉感知系统V1区的感受野。该NNSC模型具有很强的自适应于自然数据统计特性的能力。另外,利用类似小波收缩法去噪原理,该模型能够有效地去除图像中的高斯加性噪声,对自然图像编码的仿真实验也表明了该模型在生物学上的合理性和可行性。
中图分类号: