计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (29): 33-35.DOI: 10.3778/j.issn.1002-8331.2010.29.009

• 研究、探讨 • 上一篇    下一篇

基于蚁群-遗传算法的模糊Petri网参数优化算法

肖增良,乐晓波,周 辉   

  1. 长沙理工大学 计算机与通信工程学院,长沙 410076
  • 收稿日期:2010-05-13 修回日期:2010-08-19 出版日期:2010-10-11 发布日期:2010-10-11
  • 通讯作者: 肖增良

Fuzzy Petri net parameter optimization algorithms based on ant-colony-inherit algorithm

XIAO Zeng-liang,YUE Xiao-bo,ZHOU Hui   

  1. College of Computer & Communication Engineering,Changsha University of Science & Technology,Changsha 410076,China
  • Received:2010-05-13 Revised:2010-08-19 Online:2010-10-11 Published:2010-10-11
  • Contact: XIAO Zeng-liang

摘要: 在模糊Petri 网(FPN)的建立过程中如何确定模糊产生式规则的各项参数是尚未解决的热点问题。将蚁群算法和遗传算法相结合,提出了GAACA算法。仿真实验表明:该算法具有很强的泛化能力和自适应功能,能够达到参数优化的目的。

Abstract: In the process of establishing fuzzy Petri net,how to determine the parameters of fuzzy production rules is a hot issue which is yet to be resolved.This paper proposes a GAACA algorithm which combines ant colony algorithm with genetic algorithm.Simulation results show that this algorithm has strong generalization ability and adaptive capability which can achieve the purpose of parameter optimization.

中图分类号: