计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (22): 242-244.DOI: 10.3778/j.issn.1002-8331.2010.22.070

• 工程与应用 • 上一篇    下一篇

一种改进的多目标混合遗传算法及应用

唐天兵1,申文杰1,韦凌云2,谢祥宏1   

  1. 1.广西大学 计算机与电子信息学院,南宁 530004
    2.北京邮电大学 自动化学院,北京 100876
  • 收稿日期:2009-01-08 修回日期:2009-03-19 出版日期:2010-08-01 发布日期:2010-08-01
  • 通讯作者: 唐天兵

Improved multi-objective hybrid genetic algorithm and its application

TANG Tian-bing1,SHEN Wen-jie1,WEI Ling-yun2,XIE Xiang-hong1   

  1. 1.School of Computer,Electronics and Information,Guangxi University,Nanning 530004,China
    2.School of Automation,Beijing University of Posts and Telecommunications,Beijing 100876,China
  • Received:2009-01-08 Revised:2009-03-19 Online:2010-08-01 Published:2010-08-01
  • Contact: TANG Tian-bing

摘要: 在NSGA-II算法中引入自适应交叉算子和自适应变异算子,将模拟退火算法与改进的NSGA-II算法相结合,并应用到武器装备供应合同商的选择与评价中。实验结果表明,非劣解在目标空间分布均匀,算法收敛性好,为求解武器装备供应合同商选择的多目标问题提供了一种有效的工具。

关键词: 多目标优化, 遗传算法, 模拟退火, 合同商选择

Abstract: After improving NSGA-II by importing adaptive crossover and mutation operators,this paper combines it with the simulation annealing algorithm and then applies them to the problem of choice and valuation of the supply contractors of weaponry equipment.The pareto solutions are distributed uniformly and the algorithm shows nice convergence through the experimental result.So it provides an efficient tool for solving the multi-objective problem of choosing the contractors of weaponry supplies.

Key words: multi-objective optimization, genetic algorithm, simulated annealing, contractors selection

中图分类号: