计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (4): 145-148.DOI: 10.3778/j.issn.1002-8331.2010.04.047

• 图形、图像、模式识别 • 上一篇    下一篇

神经网络集成的多表情人脸识别方法

白雪飞1,2,李 茹1,2   

  1. 1.山西大学 计算机与信息技术学院,太原 030006
    2.计算智能与中文信息处理省部共建教育部重点实验室,太原 030006
  • 收稿日期:2009-02-06 修回日期:2009-03-31 出版日期:2010-02-01 发布日期:2010-02-01
  • 通讯作者: 白雪飞

Neural network ensemble based expression invariant face recognition

BAI Xue-fei1,2,LI Ru1,2   

  1. 1.School of Computer & Information Technology,Shanxi University,Taiyuan 030006,China
    2.Key Laboratory of Ministry of Education for Computation Intelligence and Chinese Information Processing,Taiyuan 030006,China
  • Received:2009-02-06 Revised:2009-03-31 Online:2010-02-01 Published:2010-02-01
  • Contact: BAI Xue-fei

摘要: 将神经网络集成应用于多表情人脸识别,通过二维主成分分析获得人脸表情特征,并为每一表情的特征空间各训练一个神经网络,利用另一神经网络对其进行集成。实验结果表明,多神经网络集成方法的识别精度高于单一神经网络所获得的结果。

Abstract: Neural network ensemble is applied to expression invariant face recognition.The facial features used are extracted through two-dimension principal component analysis.Several neural networks are trained for an eigenspace of difference expressions respectively,and their results are combined with another neural network to recognize the test sets.Experimental results show that the recognition accuracy of the proposed approach is better than individual neural network.

中图分类号: