计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (20): 82-89.DOI: 10.3778/j.issn.1002-8331.2009-0263
杨世强,白乐乐,赵成,王国栋,李德信
YANG Shiqiang, BAI Lele, ZHAO Cheng, WANG Guodong, LI Dexin
摘要:
在视觉SLAM中,特征点的提取和准确的特征匹配对机器人的位姿推断具有重要作用。针对传统ORB算法特征点分布不均匀,容易出现簇集的问题和Qtree_ORB算法特征点过均匀等问题,提出了一种基于四叉树改进的ORB特征提取算法。对每层图像金字塔进行自适应网格划分,采用自适应阈值来进行特征点提取;根据每层图像金字塔所提取特征点数目对四叉树的划分深度进行限制,减少冗余特征点;设定最小阈值来减少低质量特征点的提取;在Mikolajczyk数据集上对改进算法的均匀度和匹配性能进行测试,在TUM数据集上对改进算法在ORB-SALM2系统中的精度进行测试。结果表明改进算法能够有效提高其均匀度,并且保持着较高的匹配精度;在ORB-SLAM2测试中,改进算法能有效改进SLAM系统的轨迹精度和漂移程度。