计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (8): 1-9.DOI: 10.3778/j.issn.1002-8331.2001-0163
李章维,胡安顺,王晓飞
LI Zhangwei, HU Anshun, WANG Xiaofei
摘要:
目标检测是计算机视觉的核心,在图像识别、行人检测、大规模场景识别等方面具有广泛应用,提升目标检测的速度与精度可以拓展计算机视觉的应用范围。大数据的出现以及深度学习的发展为目标检测研究注入了新的动力。传统的目标检测主要使用基于手工特征配合机器学习的方法,即Feature-Based方法。目前的检测算法主要以卷积神经网络(CNN)为核心。分析了Feature-Based方法检测效果差的原因并提出改进方法,详细讨论了CNN网络衍生出的TWO-STATE方法和ONE-STATE方法,介绍了每种方法的联系以及相比之前方法的改进,详细描述了其网络的机理与检测过程,指出了每种方法的检测效果与不足。总结了目标检测方法在一些数据集上的检测效果与仍然存在的问题。