计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (13): 230-235.DOI: 10.3778/j.issn.1002-8331.1904-0125
杨颖,王珺,王刚
YANG Ying, WANG Jun, WANG Gang
摘要:
电信业的客户投诉不断增多而又亟待高效处理。针对电信客户投诉数据的特点,提出了一种面向高维数据的改进的集成学习分类方法。该方法综合考虑客户投诉中的文本信息及客户通讯状态信息,基于Random Subspace方法,以支持向量机(Support Vector Machine,SVM)为基分类器,采用证据推理(Evidential Reasoning,ER)规则为一种新的集成策略,构造分类模型对电信客户投诉进行分类。所提模型和方法在某电信公司客户投诉数据上进行了验证,实验结果显示该方法能够显著提高客户投诉分类的准确率和投诉处理效率。