计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (8): 9-16.DOI: 10.3778/j.issn.1002-8331.1812-0047
袁嘉杰,张 灵,陈云华
YUAN Jiajie, ZHANG Ling, CHEN Yunhua
摘要: 对于在深度神经网络的中间层分支进行深度融合,产生潜在可以共享有用信息的基础网络,从而优化信息流动,提升深度神经网络的性能,是近期的深度神经网络研究的挑战。对此提出一种基于注意力卷积模块的深度神经网络的图像识别方法。改进的模块主要分为树干分支与软分支两部分,在树干分支上,由两组残差模块组成,使该模块适用于其他深度神经网络;在软分支上,将给定的中间特征图沿着两个维度(空间与通道)获取注意力特征图,对输入中间特征图进行调整,强化有用信息抑制无用信息。改进的卷积残差模块既能解决输入与输出的尺寸不一致的问题,也能强化图像的关键信息与有效促进网络的信息流动。通过对cifar-10、cifar-100、ck+、AVEC2017数据集进行实验,实验结果表明了提出的方法应用于ResNet-50网络上对比Hu提出的方法在训练耗时相差不到0.3%的情况下,识别图像准确率有0.9%~1.2%的提高。