计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (18): 146-150.DOI: 10.3778/j.issn.1002-8331.1808-0203
朱小波,车进
ZHU Xiaobo, CHE Jin
摘要: 针对目前行人重识别算法在目标外观特征和度量算法方面的问题,提出一种融合BOW模型的多特征子空间行人重识别算法。在行人图像上采用2-D高斯模板将图像背景弱化,然后提取BOW特征描述子和YUV+HSV颜色特征描述子,并将其融合组成最终的特征描述子。在相似性度量方面,采用在原始特征空间学习一个子空间,并在该子空间学习测度矩阵的方法进行相似性度量。在VIPeR和CUHK01两个数据集上的实验结果表明,提出的算法能够明显地提高行人重识别率。