计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (18): 140-145.DOI: 10.3778/j.issn.1002-8331.1904-0280
汤深伟,贾瑞玉
TANG Shenwei, JIA Ruiyu
摘要: 针对[k]-means算法易受初始中心影响的缺点,提出了基于改进粒子群算法的[k]-means聚类算法[(k]-means cluster algorithm based on Improved PSO,IPK-means),在粒子群算法中加入混沌搜索过程,以增加PSO迭代后期粒子群的多样性,并且在粒子更新过程中,给出了一种动态调整因子公式,使得调整因子与该粒子的适应度值大小相关,即同一迭代中不同粒子也会拥有不同的调整因子。最后将改进的PSO算法应用于[k]-means聚类,为其寻找较好的初始中心,实验结果表明了该算法可取得较好的聚类结果。