计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (14): 134-141.DOI: 10.3778/j.issn.1002-8331.1804-0118
叶 枫,叶学义,罗宵晗,陈 泽
YE Feng, YE Xueyi, LUO Xiaohan, CHEN Ze
摘要: 针对非对称局部二值模式(AR-LBP)提取的人脸特征有限,以及协同表示分类(CRC)人脸存在的类间干扰,提出以多层AR-LBP特征及联合韦伯局部描述子(WLD)特征进行补充,并以增加CRC中稀疏性来降低类间干扰。提取人脸图像的多层AR-LBP特征并级联,与从原图像提取的WLD特征级联得到多层AR-LBP与WLD融合特征,采用稀疏增强的协同表示分类(SA-CRC)完成人脸分类。在ORL、Yale和GT公开人脸库上,提出的多层AR-LBP与WLD特征融合算法与AR-LBP特征提取算法、WLD特征提取算法以及多层LBP与HOG特征融合算法相比,识别正确率提高了0.7%~42.6%;当利用SA-CRC取代CRC后,识别正确率进一步得到提高。