计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (13): 140-144.DOI: 10.3778/j.issn.1002-8331.1803-0398
张志禹1,王瑞琼1,魏敏敏1,周 杰2
ZHANG Zhiyu1, WANG Ruiqiong1, WEI Minmin1, ZHOU Jie2
摘要: 针对进一步提高人脸表情识别率的问题,采用了一种基于深度学习的堆栈式混合自编码器(Stacked Hybrid Auto-Encoder,SHAE)的人脸表情识别方法。该方法的结构是由去噪自编码器(Denoising Auto-Encoder,DAE)、稀疏自编码器(Sparse Auto-Encoder,SAE)以及自编码器(Auto-Encoder,AE)组合而成的5层网络结构。为了增加网络的鲁棒性以及泛化能力,采用去噪自编码器对样本进行提取特征,为了对提取的特征进行降维以及进一步提取更抽象的稀疏特征,采用稀疏自编码器进行级联,来对特征进一步处理。训练过程首先由无标签的数据进行预训练和整体微调,对整个结构的权重进行初始化和更新调整,然后使用有标签的数据进行测试训练。在JAFFE和CK+两个数据集上实验显示,相较于单纯的堆栈式去噪自编码或者单纯的堆栈式稀疏自编码,该方法具有更好的识别效果。