计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (4): 225-232.DOI: 10.3778/j.issn.1002-8331.1711-0063
李 婷1,张瑞芳1,郭克华1,2
LI Ting1, ZHANG Ruifang1, GUO Kehua1,2
摘要: 为了解决个性化网站中很少考虑用户检索意图,检索效果较差的问题,提出了一种有效的增量协同过滤推荐方法。该增量协同过滤推荐模型改进了最流行的推荐算法之一的协同过滤算法,并应用到个性化网站中。通过分析Web日志提取用户的浏览行为,将其归一化为用户对项目的评分值,并利用改进的相似度计算方法得到用户之间的相似度值,从中选择能够表现用户偏好的最近邻集合进行评分预测后对结果排序,将排序后的结果作为推荐列表返回给用户。最后设计增量更新算法实时有效地更新用户的历史偏好数据。实验表明,增量协同过滤推荐模型适用于个性化网站,利用该方法可以使推荐结果更加符合用户意图。