计算机工程与应用 ›› 2018, Vol. 54 ›› Issue (22): 258-264.DOI: 10.3778/j.issn.1002-8331.1708-0021
刘肃平,谭志平
LIU Suping, TAN Zhiping
摘要: 分析了对辅机设备进行状态监测和分析研究的必要性,创新地将大数据技术应用于该领域,解决了该研究领域中的关键技术难题,设计并实现了一个辅机设备振动噪声大数据监测分析研究平台。平台采用流式数据实时分析技术和实时批处理技术相结合的方式,采用Storm+Hadoop大数据处理架构。一方面,利用Storm以流计算的方式,对噪音、振动、电流、电压、谐波等海量原始数据进行快速计算和处理,并将处理后的数据传输至实时监测中心;另一方面,采用批计算技术,将海量原始数据存储到基于Hadoop的分布式文件系统中,建立大数据库,再采用基于MapReduce的大数据分析技术对海量数据进行数据挖掘和建模。该平台的研究不仅实现了对辅机设备的运行管理的监测和分析,还可以作为辅机设备振动噪声大数据建模和研究的基础。