计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (20): 180-186.DOI: 10.3778/j.issn.1002-8331.1702-0105
雒培磊1,李国庆2,曾 怡1
LUO Peilei1, LI Guoqing2, ZENG Yi1
摘要: 针对遥感影像拼接的两个主要过程:图像配准和点变换,分别进行了深入研究。对遥感影像拼接中的特征点匹配问题,提出了一种利用分层卷积特征进行图像配准的方法。该方法利用卷积神经网络(Convolutional Neural Networks,CNN)自适应地提取特征点的分层卷积特征,通过相关滤波器(Correlation Filter,CF)对不同深度的卷积特征逐层进行相关性分析,进而综合计算特征点的位置。然后对传统的点变换方法进行简化,提出十字点集变换方法。根据配准的特征点计算变换参数,实现遥感影像的拼接。实验结果表明,该方法与传统的基于SIFT(Scale Invariant Feature Transform)的拼接方法相比,精度较高且具有较好的鲁棒性。