计算机工程与应用 ›› 2018, Vol. 54 ›› Issue (5): 165-169.DOI: 10.3778/j.issn.1002-8331.1609-0308
向 静1,何志良2,汤林越2,熊俊涛2
XIANG Jing1, HE Zhiliang2, TANG Linyue2, XIONG Juntao2
摘要: 利用计算机视觉进行马铃薯产后品质检测分级有十分重要意义。首先对计算机视觉系统获取的马铃薯进行图像分析,利用Otsu法去除马铃薯图像背景,然后针对马铃薯的损伤、绿皮和发芽状态进行图像处理识别;针对马铃薯中的绿皮状态,利用感知器学习算法(PLA)区分正常马铃薯与绿皮马铃薯;然后针对表皮发芽的马铃薯,利用边缘检测法得到图像中马铃薯区域的各部位边缘,结合K-最近邻分类算法(KNN)识别表面发芽的马铃薯,同时通过角点检测确定轮廓上的发芽区域;然后对检测到的边缘利用中值滤波结合面积最大法,确定马铃薯表皮的损伤部位,最终实现马铃薯品质的分级。利用计算机视觉方法马铃薯品质检测实验结果:正常马铃薯识别正确率为96.8%,绿皮马铃薯为89.7%,表皮损伤马铃薯为90.4%,发芽马铃薯为96%。