计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (5): 222-226.DOI: 10.3778/j.issn.1002-8331.1507-0086

• 工程与应用 • 上一篇    下一篇

矿用自卸车主动油气悬架非线性控制方法研究

李伟平,黄自豪,曹和利,陶建建   

  1. 湖南大学 汽车车身先进设计制造国家重点实验室,长沙 410082
  • 出版日期:2017-03-01 发布日期:2017-03-03

Nonlinear control methods of active hydro-pneumatic suspension for mining dumping truck

LI Weiping, HUANG Zihao, CAO Heli, TAO Jianjian   

  1. State Key Laboratory of Advanced Designed and Manufacture for Vehicle Body, Hunan University, Changsha 410082, China
  • Online:2017-03-01 Published:2017-03-03

摘要: 为了对矿用自卸车主动油气悬架进行有效控制,分析了其油气弹簧的刚度力与阻尼力的非线性特性,进而建立了两自由度油气悬架的非线性力学模型。应用微分几何线性化理论,经过恰当的坐标变换和反馈控制,实现非线性系统的精确线性化,而后对其设计使用线性PID控制研究;根据选定的控制目标及输出变量,通过制定相应的模糊控制规则表,设计模糊PID控制器,对悬架系统使用模糊PID控制研究。仿真结果表明,与被动悬架相比,精确线性化后的PID控制悬架以及模糊PID控制悬架均能显著提高车辆的平顺性和操稳性,使悬架的动态性能趋于稳定;另外,与模糊PID控制相比,线性化PID控制对于改善车辆行驶平顺性优势更加明显。

关键词: 油气悬架, 微分几何, 非线性控制, 比例-积分-微分(PID)控制, 模糊比例-积分-微分(PID)控制, 平顺性

Abstract: In order to carry out an effective control of active hydro-pneumatic suspension for mining dumping truck, the nonlinear characteristics of the spring force and the damping force are analyzed, then a mathematical model of a two-degree-freedom model with nonlinear active hydro pneumatic suspension system is established . The linear control theory of differential geometric is applied to realize the exact linearization of nonlinear system through the appropriate coordinate transformation and feedback control, then the linear PID control is applied. According to the control target and output variables, the corresponding fuzzy control rule tables are made and the fuzzy PID controller is designed, then the fuzzy PID approach is applied. The simulation results show that the linear PID control and Fuzzy-PID control method can signifi-cantly improve the ride comfort and handling stability, then making the dynamic performance of suspension tends to be stable. In addition, compared with fuzzy PID control, the linear PID control has more obvious advantages on improving the ride comport.

Key words: hydro-pneumatic suspension, differential geometry, non-linear control, Proportion-Integration-Differentiation(PID) control, fuzzy-Proportion-Integration-Differentiation(PID) control, ride comfort