计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (1): 147-152.DOI: 10.3778/j.issn.1002-8331.1503-0296
孔 锐1,2,揭英达1
KONG Rui1,2, JIE Yingda1
摘要: 在光照变化环境下,人脸识别的鲁棒性是人脸识别系统中一大挑战。针对光照变化对人脸识别的影响,对经典光照不变特征表示算法进行了研究,提出一种基于局部标准差光照不变的人脸特征表示算法及其加权形式。结合完备线性鉴别分析(Complete-Linear Discriminant Analysis,C-LDA)算法提取特征,在Extended Yale-B与YALE 人脸库中,与其他处理光照变化的经典方法相比,如多尺度Retinex(Multi Scale Retinex,MSR)、韦伯脸(Weber-Face,WF)和局部归一化(Local Normalization,LN),提出的算法能获得更高识别率。