[1] GAI K, GUO J, ZHU L, et al. Blockchain meets cloud computing: a survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(3): 2009-2030.
[2] SUN J, HUANG S, ZHENG C, et al. Mutation testing for integer overflow in ethereum smart contracts[J]. Tsinghua Science and Technology, 2022, 27(1): 27-40.
[3] MEHAR M I, SHIER C L, GIAMBATTISTA A, et al. Understanding a revolutionary and flawed grand experiment in blockchain: the DAO attack[J]. Journal of Cases on Information Technology, 2019, 21(1): 19-32.
[4] QIAO C, QIU J, TAN Z, et al. Evaluation mechanism for decentralized collaborative pattern learning in heterogeneous vehicular networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(11): 13123-13132.
[5] ZHANG L, TANG S, LV L. An finite iterative algorithm for sloving periodic Sylvester bimatrix equations[J]. Journal of the Franklin Institute, 2020, 357(15): 10757-10772.
[6] YI C, CAI J, ZHU K, et al. A queueing game based management framework for fog computing with strategic computing speed control[J]. IEEE Transactions on Mobile Computing, 2022, 21(5): 1537-1551.
[7] 张潆藜, 马佳利, 刘子昂, 等. 以太坊Solidity智能合约漏洞检测方法综述[J]. 计算机科学, 2022, 49(3): 52-61.
ZHANG Y L, MA J L, LIU Z A, et al. Overview of vulnerability detection methods for ethereum solidity smart contracts[J]. Computer Science, 2022, 49(3): 52-61.
[8] FENG H, FU X, SUN H, et al. Efficient vulnerability detection based on abstract syntax tree and deep learning[C]//Proceedings of the IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops. Piscataway: IEEE, 2020: 722-727.
[9] LV L, WU Z, ZHANG J, et al. A VMD and LSTM based hybrid model of load forecasting for power grid security[J]. IEEE Transactions on Industrial Informatics, 2022, 18(9): 6474-6482.
[10] OKEGBILE S D, CAI J, NIYATO D, et al. Human digital twin for personalized healthcare: vision, architecture and future directions[J]. IEEE Network, 2023, 37(2): 262-269.
[11] TANN W J, HAN X J, GUPTA S S, et al. Towards safer smart contracts: a sequence learning approach to detecting security threats[J]. arXiv:1811.06632, 2018.
[12] QIAN P, LIU Z, HE Q, et al. Towards automated reentrancy detection for smart contracts based on sequential models[J]. IEEE Access, 2020, 8: 19685-19695.
[13] WANG W, SONG J, XU G, et al. ContractWard: automated vulnerability detection models for ethereum smart contracts[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(2): 1133-1144.
[14] ZHUANG Y, LIU Z, QIAN P, et al. Smart contract vulnerability detection using graph neural networks[C]//Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. New York: ACM, 2021: 3283-3290.
[15] LIU Z, QIAN P, WANG X, et al. Combining graph neural networks with expert knowledge for smart contract vulnerability detection[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(2): 1296-1310.
[16] WU H, ZHANG Z, WANG S, et al. Peculiar: smart contract vulnerability detection based on crucial data flow graph and pre-training techniques[C]//Proceedings of the 2021 IEEE 32nd International Symposium on Software Reliability Engineering. Piscataway: IEEE, 2021: 378-389.
[17] 赵波, 上官晨晗, 彭小燕, 等. 基于语义感知图神经网络的智能合约字节码漏洞检测方法[J]. 工程科学与技术, 2022, 54(2): 49-55.
ZHAO B, SHANGGUAN C H, PENG X Y, et al. Semantic-aware graph neural network for smart contract bytecode vulnerability detection[J]. Advanced Engineering Sciences, 2022, 54(2): 49-55.
[18] TIKHOMIROV S, VOSKRESENSKAYA E, IVANITSKIY I, et al. SmartCheck: static analysis of ethereum smart contracts[C]//Proceedings of the 2018 IEEE/ACM 1st International Workshop on Emerging Trends in Software Engineering for Blockchain. Piscataway: IEEE, 2018: 9-16.
[19] 刘泽润, 郑红, 邱俊杰. 基于抽象语法树裁剪的智能合约漏洞检测研究[J]. 计算机科学, 2023, 50(4): 317-322.
LIU Z R, ZHENG H, QIU J J. Smart contract vulnerability detection based on abstract syntax tree pruning[J]. Computer Science, 2023, 50(4): 317-322.
[20] ALLAMANIS M, BROCKSCHMIDT M, KHADEMI M. Learning to represent programs with graphs[J]. arXiv: 1711.00740, 2017.
[21] ROSSI R A, ZHOU R, AHMED N K. Deep inductive graph representation learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(3): 438-452.
[22] MITRA S, AVRA L J, MCCLUSKEY E J. Scan synthesis for one-hot signals[C]//Proceedings of the Proceedings International Test Conference 1997. Piscataway: IEEE, 1997: 714-722.
[23] WOLF L, HANANI Y, BAR K, et al. Joint word2vec networks for bilingual semantic representations[J]. Int J Comput Linguistics Appl, 2014, 5: 27-42.
[24] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. arXiv:1710.10903, 2017.
[25] FERREIRA J F, CRUZ P, DURIEUX T, et al. Smartbugs: a framework to analyze solidity smart contracts[C]//Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering. Piscataway: IEEE, 2020: 1349-1352.
[26] GHALEB A, PATTABIRAMAN K. How effective are smart contract analysis tools? evaluating smart contract static analysis tools using bug injection[C]//Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis. New York: ACM, 2020: 415-427.
[27] MUELLER B. A framework for bug hunting on the ethereum blockchain[Z]. ConsenSys/mythril, 2017.
[28] TSANKOV P, DAN A, DRACHSLER-COHEN D, et al. Securify[C]//Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2018: 67-82.
[29] LUU L, CHU D H, et al. Making smart contracts smarter[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2016: 254-269.
[30] FEIST J, GRIECO G, GROCE A. Slither: a static analysis framework for smart contracts[C]//Proceedings of the 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain. Piscataway: IEEE, 2019: 8-15. |