[1] 张永宏, 何静, 阚希,等. 遥感图像道路提取方法综述[J]. 计算机工程与应用, 2018, 54(13): 1-10.
ZHANG Y H, HE J, KAN X, et al. Summary of road extraction methods for remote sensing images[J]. Computer Engineering and Applications, 2018, 54(13): 1-10.
[2] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv:1706.05587, 2017.
[3] ZHANG Z, MIAO C, LIU C A, et al. DCS-TransUperNet: road segmentation network based on CSwin transformer with dual resolution[J]. Applied Sciences, 2022, 12(7): 3511.
[4] FUKUI H, HIRAKAWA T, YAMASHITA T, et al. Attention branch network: learning of attention mechanism for visual explanation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 10705-10714.
[5] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[J]. arXiv:2010.11929, 2010.
[6] 左娟, 李勇军. 结合纹理与形状特征的高分辨率遥感影像道路提取[J]. 测绘, 2013(3): 111-113.
ZUO J, LI Y J. Road extraction from high resolution remote sensing images combining texture and shape feature[J]. Surveying and Mapping, 2013(3): 111-113.
[7] LI Y, GUO L, RAO J, et al. Road segmentation based on hybrid convolutional network for high-resolution visible remote sensing image[J]. Remote Sensing Letters, 2018, 16(4): 613-617.
[8] SGHAIER M O, LEPAGE R. Road extraction from very high resolution remote sensing optical images based on texture analysis and beamlet transform[J]. Remote Sensing, 2015, 9(5): 1946-1958.
[9] LIU Y, YAO J, LU X, et al. RoadNet: learning to comprehensively analyze road networks in complex urban scenes from high-resolution remotely sensed images[J]. Remote Sensing, 2018, 57(4): 2043-2056.
[10] HENRY C, AZIMI S M, MERKLE N, et al. Road segmentation in SAR satellite images with deep fully convolutional neural networks[J]. IEEE Geoscience, 2018, 15(12): 1867-1871.
[11] CHENG G L, WANG Y, XU S B, et al. Automatic road detection and centerline extraction via cascaded end-to-end convolutional neural network[J]. IEEE Transactions on Geoscience, 2017, 55(6): 3322-3337.
[12] WEI Y, ZHANG K, JI S P, et al. Simultaneous road surface and centerline extraction from large-scale remote sensing images using CNN-based segmentation and tracing[J]. Remote Sensing, 2020, 58(12): 8919-8931.
[13] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. arXiv:1706.03762, 2017.
[14] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[15] ZHANG C, WAN H, LIU S, et al. PVT: point-voxel Transformer for 3D deep learning[J]. arXiv:2108.06076, 2021.
[16] HEO B, YUN S, HAN D, et al. Rethinking spatial dimensions of vision transformers[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 11936-11945.
[17] YUAN L, CHEN Y, WANG T, et al. Tokens-to-token VIT: training vision transformers from scratch on imagenet[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 558-567.
[18] CHEN C F R, FAN Q, PANDA R. CrossViT: cross-attention multi-scale vision transformer for image classification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 357-366.
[19] ZHANG Z, MIAO C, LIU C, et al. HA-RoadFormer: hybrid attention transformer with multi-branch for large-scale high-resolution dense road segmentation[J]. Mathematics, 2022, 10(11): 1915.
[20] BROGGI A. Parallel and local feature extraction: a real-time approach to road boundary detection[J]. IEEE Transactions on Image Processing, 1995, 4(2): 217-223.
[21] LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022.
[22] DONG X, BAO J, CHEN D, et al. CSWin Transformer: a general vision transformer backbone with cross-shaped windows[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 12124-12134.
[23] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241.
[24] LEVY J I, HOUSEMAN E A, SPENGLER J D, et al. Fine particulate matter and polycyclic aromatic hydrocarbon concentration patterns in Roxbury, Massachusetts: a community-based GIS analysis[J]. Environmental Health Perspectives, 2001, 109(4): 341-347.
[25] BELLA G, MASSACCI F, PAULSON L C. An overview of the verification of SET[J]. International Journal of Information Security, 2005, 4: 17-28.
[26] KINGMA D P, BA J. Adam: a method for stochastic optimization[J]. arXiv:1412.6980, 2014.
[27] WAN J, XIE Z, XU Y, et al. DA-RoadNet: a dual-attention network for road extraction from high resolution satellite imagery[J]. Remote Sensing, 2021, 14: 6302-6315.
[28] PANBOONYUEN T, JITKAJORNWANICH K, LAWAWIROJWONG S, et al. Road segmentation of remotely-sensed images using deep convolutional neural networks with landscape metrics and conditional random fields[J]. Remote Sensing 2017, 9(7): 680.
[29] ZHOU L, ZHANG C, WU M. D-LinkNet: LinkNet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018: 182-186. |