计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (23): 62-78.DOI: 10.3778/j.issn.1002-8331.2405-0112
肖雨晴,罗亮,于博向,杨志渊,郝连东,艾君鹏
出版日期:
2024-12-01
发布日期:
2024-11-29
XIAO Yuqing, LUO Liang, YU Boxiang, YANG Zhiyuan, HAO Liandong, AI Junpeng
Online:
2024-12-01
Published:
2024-11-29
摘要: 环境感知是海上目标智能化监测的核心技术,广泛应用于军事与工业领域。深度学习为环境感知研究带来新活力,但目前该领域缺乏全面性的综述。从深度学习、环境感知与视觉方法的交叉点出发,将环境感知系统分为信息采集、信息融合、信息处理和信息传输四个模块。在此基础上,针对海域环境数据生成、海域目标检测识别与海陆岸线分割三个方面应用,从传统方法、卷积神经网络方法以及Transformer方法三方面系统梳理了海域环境信息的多种视觉处理方法,介绍了每种方法存在的问题及最新研究工作,并横向与纵向对比了不同方法的优缺点。最后,结合最新研究工作探讨了该领域的研究趋势。随着现代智能算法的进步,应用深度学习进行视觉感知能大大简化设备开发的进程和结构,能直观地感知周围海域目标;随着时间的推移,感知系统的提升也将主要集中在智能化、平台化和集成化方面。
肖雨晴, 罗亮, 于博向, 杨志渊, 郝连东, 艾君鹏. 面向海域环境感知的视觉处理方法研究综述[J]. 计算机工程与应用, 2024, 60(23): 62-78.
XIAO Yuqing, LUO Liang, YU Boxiang, YANG Zhiyuan, HAO Liandong, AI Junpeng. Review of Computer Vision for Marine Environmental Perception[J]. Computer Engineering and Applications, 2024, 60(23): 62-78.
[1] THIEME C, UTNE I, HAUGEN S. Assessing ship risk model applicability to marine autonomous surface ships[J]. Ocean Engineering, 2018, 165: 140-154. [2] XIAO G, YANG D, XU L, et al. The application of artificial intelligence technology in shipping: a bibliometric review[J]. Journal of Marine Science and Engineering, 2024, 12(4): 624. [3] ZHANG D, CHU X, LIU C, et al. A review on motion prediction for intelligent ship navigation[J]. Journal of Marine Science and Engineering, 2024, 12(1): 107. [4] TAVAKOL S, KHOJASTEH D, HAGHANI M, et al. A review on the progress and research directions of ocean engineering[J]. Ocean Engineering, 2023, 272: 113617. [5] HUY D, SADJOLI N, AZAM A, et al. Object perception in underwater environments: a survey on sensors and sensing methodologies[J]. Ocean Engineering, 2023, 267: 113202. [6] 李明桂, 周焕银, 龚利文. ROV水下障碍物检测和避障技术的应用综述[J]. 计算机工程与应用, 2024, 60(17): 34-47. LI M G, ZHOU H Y, GONG L W. Comprehensive review of ROV underwater obstacle detection and avoidance technology[J].Computer Engineering and Applications, 2024, 60(17): 34-47. [7] 王野, 司璐璐, 陈慧岩, 等. 水陆无人两栖车环境感知技术综述[J]. 车辆与动力技术, 2024(2): 47-56. WANG Y, SI L L, CHEN H Y, et al. An overview of environmental perception technology of unmanned amphibious vehicles[J]. Vehicle & Power Technology, 2024(2): 47-56. [8] 黄海宁, 李宝奇, 刘纪元, 等. 声呐图像水下目标识别综述与展望[J]. 电子与信息学报, 2024, 46(5): 1742-1760. HUANG H N, LI B Q, LIU J Y, et al. Sonar image underwater target recognition: a comprehensive overview and prospects[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1742-1760. [9] 高剑, 何耀祯, 陈依民, 等. 水下航行器视觉控制技术综述[J]. 水下无人系统学报, 2024, 32(2): 282-294. GAO J, HE Y Z, CHEN Y M, et al. Review of visual control technology for undersea vehicles[J]. Journal of Unmanned Undersea Systems, 2024, 32(2): 282-294. [10] 赵其昌, 吴一全, 苑玉彬. 光学遥感图像舰船目标检测与识别方法研究进展[J]. 航空学报, 2024, 45(8): 51-84. ZHAO Q C, WU Y Q, YUAN Y B. Progress of ship detection and recognition methods in optical remote sensing images[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 51-84. [11] WANG S, QIU S, SUN Z, et al. Single-view 3D object perception based on vessel generative adversarial network for autonomous ships[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(8): 9238-9252. [12] WANG N, WANG Y, WEI Y, et al. Marine vessel detection dataset and benchmark for unmanned surface vehicles[J]. Applied Ocean Research, 2024, 142: 103835. [13] CONG R, SHENG H, ZHAO M, et al. Multimodal perception integrating point cloud and light field for ship autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(9): 12477-12489. [14] 汪锡清, 胡翠萍, 何卫春, 等. 无人测量船感知系统中激光雷达技术应用研究[J]. 舰船科学技术, 2023, 45(15): 87-90. WANG X Q, HU C P, HE W C, et al. Research on the application of LiDAR technology in the sensing system of unmanned measurement ships[J]. Ship Science and Technology, 2023, 45(15): 87-90. [15] 魏婷婷. 船载激光雷达回波信号的采集存储方案及EWT降噪处理研究[D]. 桂林: 桂林理工大学, 2023. WEI T T. Research on the acquisition-storage scheme and EWT de-noising based on echo signals of shipborne LiDAR[D]. Guilin: Guilin University of Technology, 2023. [16] 任雍, 吴雪菲, 陶法, 等. 毫米波雷达海雾观测数据中的舰船杂波分析[J]. 电子测量技术, 2022, 45(10): 161-169. REN Y, WU X F, TAO F, et al. Analysis of ship clutter in millimeter-wave sea fog detection radar data[J]. Electronic Measurement Technology, 2022, 45(10): 161-169. [17] DONG K, LIU T, ZHENG Y, et al. Visual detection algorithm for enhanced environmental perception of unmanned surface vehicles in complex marine environments[J]. Journal of Intelligent & Robotic Systems, 2024, 110(1): 1. [18] 王勇, 王柏容, 慕东东. 红外船舶检测的研究现状及展望[J]. 大连海事大学学报, 2023, 49(4): 103-115. WANG Y, WANG B R, MU D D. Research status and prospects of infrared ship detection[J]. Journal of Dalian Maritime University, 2023, 49(4): 103-115. [19] 鲁洪瑞. 智能船舶感知视频数据压缩技术研究[D]. 大连: 大连海事大学, 2023. LU H R. Research on intelligent ship perception video data compression technology[D]. Dalian: Dalian Maritime University, 2023. [20] 崔元飞. 卫星光学遥感图像舰船检测系统的设计与实现[D]. 秦皇岛: 燕山大学, 2020. CUI Y F. Design and implementation of ship detection system for satellite optical remote sensing image[D]. Qinhuangdao: Yanshan University, 2020. [21] OLIVEIRA A, FERREIRA B, CRUZ N, et al. Probabilistic positioning of a mooring cable in sonar images for in-situ calibration of marine sensors[J]. IEEE Transactions on Mobile Computing, 2024, 23(9): 8855-8868. [22] CHUN S, KAWAMURA C, OHKUMA K, et al. 3D detection and tracking of a moving object by an autonomous underwater vehicle with a multibeam imaging sonar: toward continuous observation of marine life[J]. IEEE Robotics and Automation Letters, 2024, 9(4): 3037-3044. [23] 符传愉. 多波束测深系统在无人艇中的应用与研究[D].海口: 海南大学, 2024. FU C Y. Application and research of multi-beam bathymetric system in unmanned boats[D]. Haikou: Hainan University, 2024. [24] 马杰, 余逸飞, 朱小东, 等. 面向水下目标搜寻与探摸的多装备协同作业系统[J]. 中国航海, 2023, 46(1): 136-142. MA J, YU Y F, ZHU X D, et al. Multi-equipment cooperative operation system for searching and detecting underwater objects[J]. Navigation of China, 2023, 46(1): 136-142. [25] 梁国龙, 张博宇, 齐滨, 等. 无源声呐水下多目标融合跟踪方法[J]. 声学学报, 2024, 49(3): 501-512. LIANG G L, ZHANG B Y, QI B, et al. Underwater multitarget fusion tracking method for passive sonar[J]. Acta Acustica, 2024, 49(3): 501-512. [26] 杨一, 黄斌, 周新, 等. 基于三维成像声呐的无人艇水下目标检测[J]. 指挥信息系统与技术, 2024, 15(2): 76-82. YANG Y, HUANG B, ZHOU X, et al. Underwater target detection for unmanned surface vessel based on Three-dimensional imaging sonar[J]. Command Information System and Technology, 2024, 15(2): 76-82. [27] ZHANG Q, SHAN Y, ZHANG Z, et al. Multi sensor fusion‐based maritime ship object detection method for autonomous surface vehicles[J]. Journal of Field Robotics, 2024, 41(3): 493-510. [28] WANG X, SONG X, ZHAO Y. Identification and positioning of abnormal maritime targets based on AIS and remote-sensing image fusion[J]. Sensors, 2024, 24(8): 2443. [29] DING H, WENG J. A robust assessment of inland waterway collision risk based on AIS and visual data fusion[J]. Ocean Engineering, 2024, 307: 118242. [30] WANG J, GAO S, LIU S, et al. Residual fatigue life prediction for ship propeller based on test signal characteristic fusion and TV-HSMM: an experimental case study[J]. Ocean Engineering, 2024, 295: 116944. [31] LONG J, FANG Z, WANG L. SK-MMFMNet: a multi-dimensional fusion network of remote sensing images and EEG signals for multi-scale marine target recognition[J]. Information Fusion, 2024, 108: 102402. [32] KIM D, PARK G, KIM H Y. A study on the ship information fusion with AIS and ARPA radar using by blackboard system[J]. Journal of the Korean Institute of Intelligent Systems, 2014, 24(1): 16-21. [33] 许晓清. 基于多源信息融合的舰船目标检测方法研究[D]. 长沙: 中南大学, 2023. XU X Q. Research on ship target detection method based on multi-source information fusion[D]. Changsha: Central South University, 2023. [34] 吴文静, 王中训, 但波, 等. 多模态信息融合舰船目标识别研究进展[J]. 探测与控制学报, 2024, 46(2): 1-12. WU W J, WANG Z X, DAN B, et al. A review of ship target recognition based on multi-modal information fusion[J]. Journal of Detection & Control, 2024, 46(2): 1-12. [35] 姜阳, 肖长诗, 文元桥, 等. 一种水上航行场景可见光偏振图像融合方法[J]. 数据采集与处理, 2022, 37(6): 1376-1390. JIANG Y, XIAO C S, WEN Y Q, et al. A polarization image fusion method of visible light water navigation scene[J]. Journal of Data Acquisition and Processing, 2022, 37(6): 1376-1390. [36] ZHANG M, ZHANG Q, SONG R, et al. Ship landmark: an informative ship image annotation and its applications[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(11): 17778-17793. [37] 刘洪涛. 智能船舶感知系统中的视觉传感器布设及协同技术研究[D]. 大连: 大连海事大学, 2020. LIU H T. Research on vision sensor arrangement and collaborative technology in intelligent ship sensing system[D]. Dalian: Dalian Maritime University, 2020. [38] XIAO Y, LUO L, YU B, et al. Visual ship image synthesis and classification framework based on attention-DCGAN[J]. International Journal of Computational Intelligence Systems, 2024, 17(1): 143. [39] 张雪. 基于PSD和改进YOLOv5的雾天船舶检测方法研究[D]. 大连: 大连海事大学, 2023. ZHANG X. Research on foggy ship detection method based on PSD and improved YOLOv5[D]. Dalian: Dalian Maritime University, 2023. [40] WANG S, LI Y, QIAO S. ALF-YOLO: enhanced YOLOv8 based on multiscale attention feature fusion for ship detection[J]. Ocean Engineering, 2024, 308: 118233. [41] 易冠霖. 基于语义分割的船舶机舱初期火灾识别方法研究[D]. 大连: 大连海事大学, 2023. YI G L. Research on initial fire identification method of marine engine room based on semantic segmentation[D]. Dalian: Dalian Maritime University, 2023. [42] 张强, 王志豪, 王学谦, 等. 基于邻域显著性的可见光和SAR遥感图像海面舰船协同检测方法[J]. 雷达学报, 2024, 13(4): 885-903. ZHANG Q, WANG Z H, WANG X Q, et al. Cooperative detection of ships in optical and SAR remote sensing images based on neighborhood saliency[J]. Journal of Radars, 2024, 13(4): 885-903. [43] 谢友晨, 徐天阳, 汤张泳, 等. YOLO-WIT: 红外遥感弱小船舶目标检测算法[J/OL]. 北京航空航天大学学报: 1-17[2024-11-10]. https://doi.org/10.13700/j.bh.1001-5965.2023. 0834. XIE Y C, XU T Y, TANG Z Y, et al. YOLO-WIT: infrared remote sensing weak and small ship target detection algorithm[J/OL]. Journal of Beijing University of Aeronautics and Astronautics: 1-17[2024-11-10]. DOI:10.13700/j.bh.1001-5965.2023.0834. [44] SHAO Z, WU W, WANG Z, et al. Seaships: a large-scale precisely annotated dataset for ship detection[J]. IEEE Transactions on Multimedia, 2018, 20(10): 2593-2604. [45] 邓凯凯. 面向无人系统的多模态感知计算关键技术研究[D].北京: 北京邮电大学, 2024. DENG K K. Research on key technologies of multi-modal sensing computing for unmanned systems[D]. Beijing: Beijing University of Posts and Telecommunications, 2024. [46] METZ L, POOLE B, PFAU D, et al. Unrolled generative adversarial networks[J].arXiv:1611.02163, 2016. [47] NOWOZIN S, CSEKE B, TOMIOKA R. f-GAN: training generative neural samplers using variational divergence minimization[J].arXiv:1606.00709, 2016. [48] MIYATO T, KATAOKA T, KOYAMA M, et al. Spectral normalization for generative adversarial networks[J].arXiv: 1802.05957, 2018. [49] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein GAN[J].arXiv:1701.07875, 2017. [50] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[J].arXiv:1511.06434, 2015. [51] LI W, LIANG Z, MA P, et al. Hausdorff GAN: improving GAN generation quality with Hausdorff metric[J]. IEEE Transactions on Cybernetics, 2021, 52(10): 10407-10419. [52] 谢晓方, 刘厚君, 张龙杰, 等. 融合轻量级YOLOv4与KCF算法的红外舰船目标识别[J]. 兵器装备工程学报, 2021, 42(6): 175-182. XIE X F, LIU H J, ZHANG L J, et al. Infrared ship target recognition fused with lightweight YOLOv4 and KCF algorithm[J]. Journal of Ordnance Equipment Engineering, 2021, 42(6): 175-182. [53] 闫瑞波. 支持小样本学习的多模态海域目标数据生成方法研究[D]. 北京: 北京邮电大学, 2024. YAN R B. Research on multi-modal ocean target data generation method supporting small sample learning[D]. Beijing: Beijing University of Posts and Telecommunications, 2024. [54] SUNG M, KIM J, LEE M, et al. Realistic sonar image simulation using deep learning for underwater object detection[J]. International Journal of Control, Automation and Systems, 2020, 18(3): 523-534. [55] 黄琼男, 朱卫纲, 刘渊, 等. 基于多尺度GAN网络的SAR舰船目标扩充[J]. 兵工自动化, 2022, 41(7): 47-52. HUANG Q N, ZHU W G, LIU Y, et al. SAR ship target expansion based on multiscale GAN network[J]. Ordnance Industry Automation, 2022, 41(7): 47-52. [56] 潘磊, 郭宇诗, 李恒超, 等. 面向舰船目标检测的SAR图像数据PCGAN生成方法[J]. 西南交通大学学报, 2024, 59(3): 547-555. PAN L, GUO Y S, LI H C, et al. SAR image generation method via PCGAN for ship detection[J]. Journal of Southwest Jiao Tong University, 2024, 59(3): 547-555. [57] 王继伟. 海上大中型目标信息智能处理及识别方法[D].哈尔滨: 哈尔滨工业大学, 2022. WANG J W. Intelligent processing and recognition method of large and medium-sized target information on the sea[D]. Harbin: Harbin Institute of Technology, 2022. [58] 钟家国. 基于阅读理解和图像描述生成的船舶领域问答系统研究[D]. 镇江: 江苏科技大学, 2024. ZHONG J G. Research on question answering system in ship domain based on reading comprehension and image description generation[D]. Zhenjiang: Jiangsu University of Science and Technology, 2024. [59] 胡常州. 面向船舶涂装缺陷的图像智能生成与分类方法研究[D]. 镇江: 江苏科技大学, 2024. HU C Z. Research on the intelligent image generation and classification for ship coating defects method[D]. Zhenjiang: Jiangsu University of Science and Technology, 2024. [60] 李佳昱. 基于条件对抗变分自编码器的SAR图像生成研究[D]. 成都: 西南交通大学, 2022. LI J Y. SAR image generation based on conditional adversarial variational autoencoder[D].Chengdu: Southwest Jiaotong University, 2022. [61] LOU X, LIU Y, XIONG Z, et al. Generative knowledge transfer for ship detection in SAR images[J]. Computers and Electrical Engineering, 2022, 101: 108041. [62] JU?M, NIU B, ZHANG J. SAR image generation method for oriented ship detection via generative adversarial networks[J]. Signal, Image and Video Processing, 2023, 18: 589-596. [63] CAI Y, CHEN L, ZHUANG X, et al. Automated marine oil spill detection algorithm based on single-image generative adversarial network and YOLO-v8 under small samples[J]. Marine Pollution Bulletin, 2024, 203: 116475. [64] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2223-2232. [65] EMAMI H, ALIABADI M, DONG M, et al. SPA-GAN: spatial attention GAN for image-to-image translation[J]. IEEE Transactions on Multimedia, 2020, 23: 391-401. [66] WANG J, LYU Z, LIN D, et al. Guided diffusion model for adversarial purification[J].arXiv:2205.14969, 2022. [67] BAGAZINSKI N J, AHMED F. ShipGen: a diffusion model for parametric ship hull generation with multiple objectives and constraints[J]. Journal of Marine Science and Engineering, 2023, 11(12): 2215. [68] WANG L, QI Y, MATHIOPOULOS P, et al. An improved SAR ship classification method using text-to-image generation-based data augmentation and squeeze and excitation[J]. Remote Sensing, 2024, 16(7): 1299. [69] KUANG Y, MA F, LI F, et al. Semantic-layout-guided image synthesis for high-quality synthetic-aperture radar detection sample generation[J]. Remote Sensing, 2023, 15(24): 5654. [70] ZHANG X, LI Y, LI F, et al. Ship-Go: SAR ship images inpainting via instance-to-image generative diffusion models[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 207: 203-217. [71] HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[C]//Advances in Neural Information Processing Systems, 2020: 6840-6851. [72] ROMBACH R, BLATTMANN A, LORENZ D, et al. High-resolution image synthesis with latent diffusion models[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 10684-10695. [73] DARAS G, DIMAKIS A. Discovering the hidden vocabulary of DALLE-2[J].arXiv:2206.00169, 2022. [74] BUEHLER M. Generating 3D architectured nature-inspired materials and granular media using diffusion models based on language cues[J]. Oxford Open Materials Science, 2022, 2(1): 10. [75] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149. [76] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018. [77] JIAN L, PU Z, ZHU L, et al. SS R-CNN: self-supervised learning improving mask R-CNN for ship detection in remote sensing images[J]. Remote Sensing, 2022, 14(17): 4383. [78] JIANG M, GU L, LU X, et al. Ship contour extraction from SAR images based on faster R-CNN and chan-vese model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-14. [79] LORAN T, DA S, JOSHI S, et al. Ship detection based on faster R-CNN using range-compressed airborne radar data[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 20: 1-5. [80] LI Y, ZHANG S, WANG W. A lightweight faster R-CNN for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19: 1-5. [81] HUANG X, ZHANG B, PERRIE W, et al. A novel deep learning method for marine oil spill detection from satellite synthetic aperture radar imagery[J]. Marine Pollution Bulletin, 2022, 179: 113666. [82] GONZALES-MARTINEZ R, MACHACUAY J, ROTTA P, et al. Hyperparameters tuning of faster R-CNN deep learning transfer for persistent object detection in radar images[J]. IEEE Latin America Transactions, 2022, 20(4): 677-685. [83] YASIR M, LIU S, XU M, et al. ShipGeoNet: SAR image-based geometric feature extraction of ships using convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024. [84] MANA S, SASIPRABA T. An intelligent deep learning enabled marine fish species detection and classification model[J]. International Journal on Artificial Intelligence Tools, 2022, 31(1): 2250017. [85] WANG T, LI Y. Rotation-invariant task-aware spatial disentanglement in rotated ship detection based on the three-stage method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-12. [86] YE J, SUN Y, LIU G, et al. Ship detection framework based on deep learning network[C]//Proceedings of the 2019 International Conference on Information Technology, Electrical and Electronic Engineering, 2019: 174-180. [87] 余伟, 尤红建, 胡玉新, 等. 基于多尺度双邻域显著性的高分四号遥感图像运动船舶检测方法[J]. 电子与信息学报, 2023, 45(1): 282-290. YU W, YOU H J, HU Y X, et al. Moving ship detection method based on multi-scale dual-neighborhood saliency for GF-4 satellite remote sensing images[J]. Journal of Electronics & Information Technology, 2023, 45(1): 282-290. [88] JIANG Z, SU L, SUN Y. YOLOv7-Ship: a lightweight algorithm for ship object detection in complex marine environments[J]. Journal of Marine Science and Engineering, 2024, 12(1): 190. [89] ZHANG Q, WANG L, MENG H, et al. Ship detection in maritime scenes under adverse weather conditions[J]. Remote Sensing, 2024, 16(9): 1567. [90] SEONG N, KIM J, LIM S. Graph-based anomaly detection of ship movements using CCTV videos[J]. Journal of Marine Science and Engineering, 2023, 11(10): 1956. [91] ZHANG H, WANG H, YAN Y, et al. Remote ship detection using relative multiscale weighted link entropy in marine environment[J]. Ocean Engineering, 2024, 295: 116976. [92] ZHOU Y, FU K, HAN B, et al. D-MFPN: a doppler feature matrix fused with a multilayer feature pyramid network for SAR ship detection[J]. Remote Sensing, 2023, 15(3): 626. [93] YIN Y, CHENG X, SHI F, et al. High-order spatial interactions enhanced lightweight model for optical remote sensing image-based small ship detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-16. [94] FANG Z, WANG X, ZHANG L, et al. YOLO-RSA: a multiscale ship detection algorithm based on optical remote sensing image[J]. Journal of Marine Science and Engineering, 2024, 12(4): 603. [95] ZHOU Z, ZHAO J, CHEN X, et al. A ship tracking and speed extraction framework in hazy weather based on deep learning[J]. Journal of Marine Science and Engineering, 2023, 11(7): 1353. [96] CAI S, MENG H, WU J. FE-YOLO: YOLO ship detection algorithm based on feature fusion and feature enhancement[J]. Journal of Real-Time Image Processing, 2024, 21(2): 61. [97] XING B, WANG W, QIAN J, et al. A lightweight model for real-time monitoring of ships[J]. Electronics, 2023, 12(18): 3804. [98] JIANG Y, HUANG L, ZHANG Z, et al. Analysis of scale sensitivity of ship detection in an anchor-free deep learning framework[J]. Electronics, 2022, 12(1): 38. [99] YAO C, XIE P, ZHANG L, et al. ATSD: anchor-free two-stage ship detection based on feature enhancement in SAR images[J]. Remote Sensing, 2022, 14(23): 6058. [100] ZHANG D, WANG C, FU Q. OFCOS: an oriented anchor-free detector for ship detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 20: 1-5. [101] HU Q, HU S, LIU S. BANet: a balance attention network for anchor-free ship detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-12. [102] ZHU M, HU G, LI S, et al. A novel anchor-free method based on FCOS plus ATSS for ship detection in SAR images[J]. Remote Sensing, 2022, 14(9): 2034. [103] LV J, CHEN J, HUANG Z, et al. An anchor-free detection algorithm for SAR ship targets with deep saliency representation[J]. Remote Sensing, 2022, 15(1): 103. [104] QU H, SHEN L, GUO W, et al. Ships detection in SAR images based on anchor-free model with mask guidance features[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 15: 666-675. [105] GAO Y, WU C, REN M. A novel anchor-free model with salient feature fusion mechanism for ship detection in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 9089-9105. [106] BAI L, YAO C, YE Z, et al. A novel anchor-free detector using global context-guide feature balance pyramid and united attention for SAR ship detection[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 1-5. [107] GAO F, CAI C, TANG W, et al. A compact and high-efficiency anchor-free network based on contour key points for SAR ship detection[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 1-5. [108] ZHANG Z, LU X, CAO G, et al. ViT-YOLO: transformer-based YOLO for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2799-2808. [109] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[J]. arXiv:2010.11929, 2020. [110] HUANG L, WANG F, ZHANG Y, et al. Fine-grained ship classification by combining CNN and Swin Transformer[J]. Remote Sensing, 2022, 14(13): 3087. [111] ZHOU S, ZANG M, WU L, et al. Lightweight SAR ship detection network based on transformer and feature enhancement[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 4845-4858. [112] CHEN B, YU C, ZHAO S, et al. An anchor-free method based on transformers and adaptive features for arbitrarily oriented ship detection in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 17: 2012-2028. [113] XING Z, REN J, FAN X, et al. S-DETR: a transformer model for real-time detection of marine ships[J]. Journal of Marine Science and Engineering, 2023, 11(4): 11040696. [114] SUN B, WANG X F, OAD A, et al. Automatic ship object detection model based on YOLOv4 with transformer mechanism in remote sensing images[J]. Applied Sciences, 2023, 13(4): 2488. [115] LIU D. TS2Anet: ship detection network based on transformer[J]. Journal of Sea Research, 2023, 195: 102415. [116] WANG F, YU D, HUANG L, et al. Fine-grained ship image classification and detection based on a vision transformer and multi-grain feature vector FPN model[J]. Geo-spatial Information Science, 2024: 1-22. [117] XIE Z, BAI X, XU X, et al. An anomaly detection method based on ship behavior trajectory[J]. Ocean Engineering, 2024, 293: 116640. [118] SUN Z, LENG X, ZHANG X, et al. Ship recognition for complex SAR images via dual-branch transformer fusion network[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 1-5. [119] XUE H, WANG S, XIA M, et al. G-Trans: a hierarchical approach to vessel trajectory prediction with GRU-based transformer[J]. Ocean Engineering, 2024, 300: 117431. [120] FENG Y, YOU Y, TIAN J, et al. OEGR-DETR: a novel detection transformer based on orientation enhancement and group relations for SAR object detection[J]. Remote Sensing, 2023, 16(1): 106. [121] LIN B, DONG X. A multi-task segmentation and classification network for remote ship hull inspection[J]. Ocean Engineering, 2024, 301: 117608. [122] ZHANG Y, MA Y, LIU J. Ship trajectory segmentation and semi-supervised clustering via geospatial background knowledge[J]. Ocean Engineering, 2024, 304: 117872. [123] MA Z, WU J, WANG S, et al. A multi-task network with dynamic segmentation for sea ice classification in arctic shipping route optimization[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(9): 11893-11905. [124] CARRILLOPEREZ B, BARNES S, STEPHAN M. Ship segmentation and georeferencing from static oblique view images[J]. Sensors, 2022, 22(7): 2713. [125] AGHDAMI-NIA M, SHAH-HOSSEINI R, ROSTAMI A, et al. Automatic coastline extraction through enhanced sea-land segmentation by modifying Standard U-Net[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 109: 102785. [126] SHENG H, GUO M, GAN Y, et al. Coastline extraction based on multi-scale segmentation and multi-level inheritance classification[J]. Frontiers in Marine Science, 2022, 9: 1031417. [127] LIU C, LUO Y, YANG J, et al. Coastline detection in polarimetric SAR images based on freeman decomposition and three-region Markov random field segmentation[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 1-5. [128] HEIDLER K, MOU L, BAUMHOER C, et al. HED-UNet: combined segmentation and edge detection for monitoring the Antarctic coastline[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-14. [129] LI Y, WANG X, ZHANG X, et al. WRBSNet: a novel sea-land segmentation network with a wider range of batch sizes[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 1-5. [130] DANG K, VU K, NGUYEN H, et al. Application of deep learning models to detect coastlines and shorelines[J]. Journal of Environmental Management, 2022, 320: 115732. [131] XU J, LI J, ZHAO X, et al. DANet-SMIW: an improved model for island waterline segmentation based on DANet[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 17: 884-893. [132] XIANG J, LIU J, CHEN D, et al. CTFuseNet: a multi-scale CNN-Transformer feature fused network for crop type segmentation on UAV remote sensing imagery[J]. Remote Sensing, 2023, 15(4): 1151. [133] YU M, QIN F. Research on the applicability of transformer model in remote-sensing image segmentation[J]. Applied Sciences, 2023, 13(4): 2261. [134] ZHANG Y, LI C, SHANG S, et al. SwinSeg: swin transformer and MLP hybrid network for ship segmentation in maritime surveillance system[J]. Ocean Engineering, 2023, 281: 114885. [135] MA F, KANG Z, CHEN C, et al. MrisNet: robust ship instance segmentation in challenging marine radar environments[J]. Journal of Marine Science and Engineering, 2023, 12(1): 72. [136] FAN F, ZENG X, WEI S, et al. Efficient instance segmentation paradigm for interpreting SAR and optical images[J]. Remote Sensing, 2022, 14(3): 531. [137] ZHANG J, GAO J, LIANG J, et al. Efficient water segmentation with transformer and knowledge distillation for USVs[J]. Journal of Marine Science and Engineering, 2023, 11(5): 901. [138] WANG Z, MAHMOUDIAN N. Aerial fluvial image dataset for deep semantic segmentation neural networks and its benchmarks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 4755-4766. |
[1] | 李厚君, 韦柏全. 属性蒸馏的零样本识别方法[J]. 计算机工程与应用, 2024, 60(9): 219-227. |
[2] | 车运龙, 袁亮, 孙丽慧. 基于强语义关键点采样的三维目标检测方法[J]. 计算机工程与应用, 2024, 60(9): 254-260. |
[3] | 邱云飞, 王宜帆. 双分支结构的多层级三维点云补全[J]. 计算机工程与应用, 2024, 60(9): 272-282. |
[4] | 叶彬, 朱兴帅, 姚康, 丁上上, 付威威. 面向桌面交互场景的双目深度测量方法[J]. 计算机工程与应用, 2024, 60(9): 283-291. |
[5] | 王彩玲, 闫晶晶, 张智栋. 基于多模态数据的人体行为识别方法研究综述[J]. 计算机工程与应用, 2024, 60(9): 1-18. |
[6] | 廉露, 田启川, 谭润, 张晓行. 基于神经网络的图像风格迁移研究进展[J]. 计算机工程与应用, 2024, 60(9): 30-47. |
[7] | 杨晨曦, 庄旭菲, 陈俊楠, 李衡. 基于深度学习的公交行驶轨迹预测研究综述[J]. 计算机工程与应用, 2024, 60(9): 65-78. |
[8] | 宋建平, 王毅, 孙开伟, 刘期烈. 结合双曲图注意力网络与标签信息的短文本分类方法[J]. 计算机工程与应用, 2024, 60(9): 188-195. |
[9] | 周定威, 扈静, 张良锐, 段飞亚. 面向目标检测的数据集标签遗漏的协同修正技术[J]. 计算机工程与应用, 2024, 60(8): 267-273. |
[10] | 周伯俊, 陈峙宇. 基于深度元学习的小样本图像分类研究综述[J]. 计算机工程与应用, 2024, 60(8): 1-15. |
[11] | 孙石磊, 李明, 刘静, 马金刚, 陈天真. 深度学习在糖尿病视网膜病变分类领域的研究进展[J]. 计算机工程与应用, 2024, 60(8): 16-30. |
[12] | 汪维泰, 王晓强, 李雷孝, 陶乙豪, 林浩. 时空图神经网络在交通流预测研究中的构建与应用综述[J]. 计算机工程与应用, 2024, 60(8): 31-45. |
[13] | 谢威宇, 张强. 基于深度学习的图像中无人机与飞鸟检测研究综述[J]. 计算机工程与应用, 2024, 60(8): 46-55. |
[14] | 谌海云, 黄忠义, 王海川, 余鸿皓. 基于改进Tracktor的行人多目标跟踪算法[J]. 计算机工程与应用, 2024, 60(8): 242-249. |
[15] | 常禧龙, 梁琨, 李文涛. 深度学习优化器进展综述[J]. 计算机工程与应用, 2024, 60(7): 1-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||