[1] 姜希印, 周玉华, 刘体军, 等. 质量缺陷及粉化破裂立井井壁治理措施[J]. 煤矿安全, 2019, 50(2): 161-164.
JIANG X Y, ZHOU Y H, LIU T J, et al. Treatment measures of quality defects and fractured shaft wellbore[J]. Safety in Coal Mines, 2019, 50(2): 161-164.
[2] LI Z Q, LAI J X, REN Z D, et al. Failure mechanical behaviors and prevention methods of shaft lining in China[J]. Engineering Failure Analysis, 2023, 143: 106904.
[3] 薛芮. 煤矿立井井筒缺陷检测技术研究[D]. 徐州: 中国矿业大学, 2021.
XUE R. Study on defect detection technology of coal mine vertical wellbore[D]. Xuzhou: China University of Mining and Technology, 2021.
[4] YAN M D, BO S B, XU K, et al. Pavement crack detection and analysis for high-grade highway[C]//Proceedings of the 2007 8th International Conference on Electronic Measurement and Instruments, 2007: 548-552.
[5] WU H Y, ZHAO R X, LI B. Crack image processing using probability based threshold[C]//Proceedings of the 2011 International Conference on Multimedia Technology, 2011: 3904-3907.
[6] AMHAZ R, CHAMBON S, IDIER J, et al. Automatic crack detection on two-dimensional pavement images: an algorithm based on minimal path selection[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(10): 2718-2729.
[7] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[8] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems 28, 2015: 91-99.
[9] SEKAR A, PERUMAL V. Automatic road crack detection and classification using multi-tasking faster RCNN[J]. Journal of Intelligent & Fuzzy Systems, 2021, 41(6): 6615-6628.
[10] 牛慧余, 包腾飞, 李扬涛, 等. 基于改进Mask R-CNN的混凝土坝裂缝像素级检测方法[J]. 水利水电科技进展, 2023, 43(1): 87-92.
NIU H Y, BAO T F, LI Y T, et al. Pixel-level crack detection method of concrete dam based on improved Mask R-CNN[J]. Advances in Science and Technology of Water Resources, 2023, 43(1): 87-92.
[11] CHEN L, AN S M, ZHAO S, et al. MS-FPN-based pavement defect identification algorithm[J]. IEEE Access, 2023, 11: 124797-124807.
[12] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[13] TERVEN J, CORDOVA-ESPARZA D M, ROMERO-GONZALEZ J A. A comprehensive review of YOLO architectures in computer vision: from YOLOv1 to YOLOv8 and YOLO-NAS[J]. Machine Learning and Knowledge Extraction, 2023, 5(4): 1680-1716.
[14] XIANG W N, WANG H C, XU Y, et al. Road disease detection algorithm based on YOLOv5s-DSG[J]. Journal of Real-Time Image Processing, 2023, 20(3): 56.
[15] ZHAO M H, SU Y H, WANG J X, et al. MED-YOLOv8s: a new real-time road crack, pothole, and patch detection model[J]. Journal of Real-Time Image Processing, 2024, 21(2): 26.
[16] WANG X Q, GAO H B, JIA Z M, et al. BL-YOLOv8: an improved road defect detection model based on YOLOv8[J]. Sensors, 2023, 23(20): 8361.
[17] 倪昌双, 李林, 罗文婷, 等. 改进YOLOv7的沥青路面病害检测[J]. 计算机工程与应用, 2023, 59(13): 305-316.
NI C S, LI L, LUO W T, et al. Disease detection of asphalt pavement based on improved YOLOv7[J]. Computer Engineering and Applications, 2023, 59(13): 305-316.
[18] HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017.
[19] LEE Y W, PARK J. CenterMask: real-time anchor-free instance segmentation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 13906-13915.
[20] DING X H, ZHANG Y Y, GE Y X, et al. UniRepLKNet: a universal perception large-kernel ConvNet for audio video point cloud time-series and image recognition[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024: 5513-5524.
[21] FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 3146-3154.
[22] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 3-19.
[23] OUYANG D L, HE S, ZHANG G Z, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, 2023: 1-5.
[24] LI H L, LI J, WEI H B, et al. Slim-Neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles [J]. arXiv:2206.02424, 2022.
[25] HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
[26] YU G, ZHOU X L. An improved YOLOv5 crack detection method combined with a bottleneck transformer[J]. Mathematics, 2023, 11(10): 2377.
[27] ARYA D, MAEDA H, GHOSH S K, et al. RDD2020: an annotated image dataset for automatic road damage detection using deep learning[J]. Data in Brief, 2021, 36: 107133. |