计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (21): 1-17.DOI: 10.3778/j.issn.1002-8331.2312-0032
林素青,罗定南,张书华
出版日期:
2024-11-01
发布日期:
2024-10-25
LIN Suqing, LUO Dingnan, ZHANG Shuhua
Online:
2024-11-01
Published:
2024-10-25
摘要: 互联网技术的应用普及使网络数据资源呈指数级增长,从海量数据中获取需求信息愈加困难。推荐算法因能有效解决信息过载问题而备受关注,相关研究成果层出不穷。以中国知网(CNKI)和科学网(WOS)核心合集为主要数据源,采集2012—2024年间出版的4?773篇和4?531篇中英文文献,利用可视化分析工具CiteSpace和VOSviewer绘制文献基本信息与关键词共现图谱;借助图谱分析,提炼核心技术关键词:知识图谱、图神经网络和深度学习,并选取与之关联的代表性推荐算法;通过图表直观展示算法核心机制和基本原理,聚焦现有研究的不足与挑战以及针对性解决方案;基于挑战-方案-来源文献的格式,绘制各核心技术关键词所关联算法的知识架构图,实现推荐原理的可视化。
林素青, 罗定南, 张书华. 推荐算法研究进展及知识图谱可视化分析[J]. 计算机工程与应用, 2024, 60(21): 1-17.
LIN Suqing, LUO Dingnan, ZHANG Shuhua. Research Progress on Recommendation Algorithms with Knowledge Graph Visualization Analysis[J]. Computer Engineering and Applications, 2024, 60(21): 1-17.
[1] 赵晔辉, 柳林, 王海龙, 等. 知识图谱推荐系统研究综述[J]. 计算机科学与探索, 2023, 17(4): 771-791. ZHAO Y H, LIU L, WANG H L, et al. Survey of knowledge graph recommendation system research[J]. Journal of Frontiers of Computer Science & Technology, 2023, 17(4): 771-791. [2] 秦川, 祝恒书, 庄福振, 等. 基于知识图谱的推荐系统研究综述[J]. 中国科学: 信息科学, 2020, 50(7): 937-956. QIN C, ZHU H S, ZHUANG F Z, et al. A survey on knowledge graph-based recommender systems[J]. Science China: Information Science, 2020, 50(7): 937-956. [3] 朱志国, 李伟玥, 姜盼, 等. 图神经网络会话推荐系统综述[J]. 计算机工程与应用, 2023, 59(5): 55-69. ZHU Z G, LI W Y, JIANG P, et al. Survey of graph neural networks in session recommender systems[J]. Computer Engineering and Applications, 2023, 59(5): 55-69. [4] 高广尚. 深度学习推荐模型中的注意力机制研究综述[J]. 计算机工程与应用, 2022, 58(9): 9-18. GAO G S. Survey on attention mechanisms in deep learning recommendation models[J]. Computer Engineering and Applications, 2022, 58(9): 9-18. [5] CAI X, GUO W, ZHAO M, et al. A knowledge graph-based many-objective model for explainable social recommendation[J]. IEEE Transactions on Computational Social Systems, 2023, 10(6): 3021-3030. [6] WANG J, SHI Y, YU H, et al. A novel KG-based recommendation model via relation-aware attentional GCN[J]. Knowledge-Based Systems, 2023, 275: 110702. [7] WANG Y, ZHANG Y, ZHU J, et al. Enhancing conversational recommender systems via multi-level knowledge modeling with semantic relations[J]. Knowledge-Based Systems, 2023, 282: 111129. [8] WU Y, LIAO L, ZHANG G, et al. State graph reasoning for multimodal conversational recommendation[J]. IEEE Transactions on Multimedia, 2023, 25: 3113-3124. [9] 朱立玺, 黄晓雯, 赵梦媛, 等. 基于负反馈修正的多轮对话推荐系统[J]. 计算机学报, 2023, 46(5): 1086-1102. ZHU L X, HUANG X W, ZHAO M Y, et al. Multi-round conversational recommendation system based on negative feedback correction[J]. Chinese Journal of Computers, 2023, 46(5): 1086-1102. [10] ZHU Y, LIN Q, LU H, et al. Recommending learning objects through attentive heterogeneous graph convolution and operation-aware neural network[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(4): 4178-4189. [11] DONG Y, LIU Y X, DONG Y F, et al. Multi-knowledge enhanced graph convolution for learning resource recommendation[J]. Knowledge-Based Systems, 2024, 291: 111521. [12] 金天成, 窦亮, 肖春芸, 等. 记忆与认知融合的个性化OJ习题推荐方法[J]. 计算机学报, 2023, 46(1): 103-124. JIN T C, DOU L, XIAO C Y, et al. Personalized OJ exercise recommendation method with memory and cognition merging[J], Chinese Journal of Computers, 2023, 46(1): 103-124. [13] MEZNI H, BENSLIMANE D, BELLATRECHE L. Context? aware service recommendation based on knowledge graph embedding[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(11): 5225-5238. [14] LI Y, HOU L, LI D, et al. HKGCL: hierarchical graph contrastive learning for multi-domain recommendation over knowledge graph[J]. Expert Systems with Applications, 2023, 233: 120963. [15] CHEN B, XU Y, ZHEN J, et al. NRMG: news recommendation with multiview graph convolutional networks[J]. IEEE Transactions on Computational Social Systems, 2024, 11(2): 2245-2255. [16] ZHAO N, LONG Z, WANG J, et al. AGRE: a knowledge graph recommendation algorithm based on multiple paths embeddings RNN encoder[J]. Knowledge-Based Systems, 2023, 259: 110078. [17] WEI Y, WANG X, NIE L, et al. Causal inference for knowledge graph based recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(11): 11153-11164. [18] 杨兴耀, 李想, 于炯, 等. 简化且多层结合的知识图谱卷积网络推荐算法[J]. 计算机工程与应用, 2023, 59(12): 106-112. YANG X Y, LI X, YU J, et al. Light and multilayer combined recommendation with knowledge graph convolutional network[J]. Computer Engineering and Applications, 2023, 59(12): 106-112. [19] KHELLOUFI A, NING H, NAOURI A, et al. A multimodal latent-features-based service recommendation system for the social Internet of Things[J]. IEEE Transactions on Computational Social Systems, 2024, 11(4):5388-5403. [20] MENG L, LIU Z, CHU D, et al. POI recommendation for occasional groups Based on hybrid graph neural networks[J]. Expert Systems with Applications, 2024, 237: 121583. [21] LIU Z Z, MENG L Q, SHENG Q Z, et al. POI recommendation for random groups based on cooperative graph neural networks[J]. Information Processing & Management, 2024, 61(3): 103676. [22] FU S, REN Q, LV X, et al. Multi-behavior recommendation with SVD graph neural networks[J]. Expert Systems with Applications, 2024, 249: 123575. [23] PENG X, SUN J, YAN M, et al. Attention-guided graph convolutional network for multi-behavior recommendation[J]. Knowledge-Based Systems, 2023, 280: 111040. [24] ZHANG Y Y, ZHU J W, ZHANG Y L, et al. Social-aware graph contrastive learning for recommender systems[J]. Applied Soft Computing, 2024, 158: 111558. [25] GAO L, YU J, ZHAO J, et al. A novel temporal privacy-preserving model for social recommendation[J]. IEEE Transactions on Computational Social Systems, 2024, 11(5): 5658-5670. [26] ABOLGHASEMI R, VIEDMA E H, ENGELSTAD P, et al. A graph neural approach for group recommendation system based on pairwise preferences[J]. Information Fusion, 2024, 107: 102343. [27] ZHOU W, HUANG Z, WANG C, et al. A multi-graph neural group recommendation model with meta-learning and multi-teacher distillation[J]. Knowledge-Based Systems, 2023, 276: 110731. [28] WU Y, YIN H, ZHOU Q, et al. Community answer recommendation based on heterogeneous semantic fusion[J]. Expert Systems with Applications, 2024, 238: 121919. [29] HAO Z, CHEN J, WEN W, et al. A selection-pattern-aware recommendation model with colored-motif attention network[J]. Neurocomputing, 2023, 538: 126178. [30] ZHAO Y, JIANG F, PANG Y, et al. EduLGCL: local-global contrastive learning model for education recommendation[J]. Knowledge-Based Systems, 2024, 286: 111357. [31] CHANG Y, ZHOU W, WEN J. IHG4MR: interest-oriented heterogeneous graph for multirelational recommendation[J]. Expert Systems with Applications, 2023, 228: 120321. [32] NIE J, ZHAO Z, HUANG L, et al. Cross-domain recommendation via user-clustering and multidimensional information fusion[J]. IEEE Transactions on Multimedia, 2023, 25: 868-880. [33] WEI S, WANG Z, AN X, et al. A recommendation model for e-commerce platforms oriented to explicit information compensation and hidden information mining[J]. Knowledge-Based Systems, 2024, 286: 111359. [34] LU L, WANG B, ZHANG Z, et al. Distinguishing latent interaction types from implicit feedbacks for recommendation[J]. Information Sciences, 2024, 654: 119834. [35] LIAO J, LIU F, ZHENG J, et al. A dynamic adaptive multi-view fusion graph convolutional network recommendation model with dilated mask convolution mechanism[J]. Information Sciences, 2024, 658: 120028. [36] HUANG B, ZHENG S, FUJITA H, et al. A multi-task learning model for recommendation based on fusion of dynamic and static neighbors[J]. Engineering Applications of Artificial Intelligence, 2024, 133: 108190. [37] 王永贵, 邹赫宇. 多任务联合学习的图卷积神经网络推荐[J]. 计算机工程与应用, 2024, 60(4): 306-314. WANG Y G, ZOU H Y. Multi-task joint learning for graph convolutional neural network recommendations[J]. Computer Engineering and Applications, 2024, 60(4): 306-314. [38] 王巍, 杜雨晅, 郑小丽, 等. 基于图卷积自注意力机制的神经协同推荐算法[J]. 计算机工程与应用, 2023, 59(13): 247-258. WANG W, DU Y X, ZHENG X L, et al. Collaborative filtering recommendation algorithm based on graph convolution attention neural network[J]. Computer Engineering and Applications, 2023, 59(13): 247-258. [39] 夏鸿斌, 黄凯, 刘渊. 多特征融合短会话推荐模型[J].模式识别与人工智能, 2023, 36(4): 354-365. XIA H B, HUANG K, LIU Y. Multi-feature fusion based short session recommendation model[J]. Pattern Recognition and Artificial Intelligence, 2023, 36(4): 354-365. [40] 吴文政, 卢先领. 融合物品转换关系和时序信息的会话推荐算法[J]. 计算机科学与探索, 2024, 18(3): 768-779. WU W Z, LU X L. Session recommendation algorithm combining item transition relations and time order information[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 768-779. [41] 章淯淞, 夏鸿斌, 刘渊. 自监督混合图神经网络的会话推荐模型[J]. 计算机科学与探索, 2024, 18(4): 1021-1031. ZHANG Y S, XIA H B, LIU Y. Self-supervised hybrid graph neural network for session-based recommendation[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1021-1031. [42] NOORIAN A. A BERT-based sequential POI recommender system in social media[J]. Computer Standards & Interfaces, 2024, 87: 103766. [43] ZHANG J, MA M, GAO X, et al. Encoder-decoder based route generation model for flexible travel recommendation[J]. IEEE Transactions on Services Computing, 2024, 17(3): 905-920. [44] KUMAR A, JAIN D K, MALLIK A, et al. Modified node2vec and attention based fusion framework for next POI recommendation[J]. Information Fusion, 2024, 101: 101998. [45] SUN L L, ZHENG Y D, LU R X, et al. Towards privacy-preserving category-aware POI recommendation over encrypted LBSN data[J].?Information Sciences,?2024, 662: 120253. [46] YIN M J, WANG B, LING C. A fast local citation recommendation algorithm scalable to multi-topics[J]. Expert Systems with Applications, 2024, 238: 122031. [47] DINH T N, PHAM P, NGUYEN G L, et al. Enhancing local citation recommendation with recurrent highway networks and SciBERT-based embedding[J]. Expert Systems with Applications, 2024, 243: 122911. [48] WU H, GUO G, YANG E, et al. PESI: personalized explanation recommendation with sentiment inconsistency between ratings and reviews[J]. Knowledge-Based Systems, 2024, 283: 111133. [49] XIONG Y, LIU Y, QIAN Y, et al. Review-based recommendation under preference uncertainty: an asymmetric deep learning framework[J]. European Journal of Operational Research, 2024, 316(3): 1044-1057. [50] 李淑芝, 余乐陶, 邓小鸿. 融合深度情感分析和评分矩阵的推荐模型[J]. 电子与信息学报, 2022, 44(1): 245-253. LI S Z, YU L T, DENG X H. Recommendation model combining deep sentiment analysis and scoring matrix[J]. Journal of Electronics & Information Technology, 2022, 44(1): 245-253. [51] CHEN Y C, CHEN Y L, HSU C H. G-TransRec: a transformer-based next-item recommendation with time prediction[J]. IEEE Transactions on Computational Social Systems, 2024, 11(3):?4175-4188. [52] CHIANG J H, MA C Y, WANG C S, et al. An adaptive, context-aware, and stacked attention network-based recommendation system to capture users’ temporal preference[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(4): 3404-3418. [53] WU C C, CHEN Y L, YEH Y H. A deep recommendation model considering the impact of time and individual diversity[J]. IEEE Transactions on Computational Social Systems, 2024, 11(2): 2558-2569. [54] YIN P, SUN Y, GAO Z, et al. MAInt: a multi-task learning model with automatic feature interaction learning for personalized recommendations[J]. Information Sciences, 2024, 665: 120362. [55] ZHENG X, NI Z, ZHONG X, et al. Kernelized deep learning for matrix factorization recommendation system using explicit and implicit information[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(1): 1205-1216. [56] 张全贵, 胡嘉燕, 王丽. 耦合用户公共特征的单类协同过滤推荐算法[J]. 计算机科学与探索, 2022, 16(3): 637-648. ZHANG Q G, HU J Y, WANG L. One class collaborative filtering recommendation algorithm coupled with user common characteristics[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 637-648. [57] HE Y, WU G, CAI D, et al. Meta-path based graph contrastive learning for micro-video recommendation[J]. Expert Systems with Applications, 2023, 222: 119713. [58] SUN Q, SHI L, LIU L, et al. A novel recommendation algorithm integrates resource allocation and resource transfer in weighted bipartite network[J]. Big Data Mining and Analytics, 2024, 7(2): 357-370. [59] LIU D, WANG Y, LUO C, et al. An improved autoencoder for recommendation to alleviate the vanishing gradient problem[J]. Knowledge-Based Systems, 2023, 263: 110254. [60] DENG J, WU Q, WANG S, et al. A novel joint neural collaborative filtering incorporating rating reliability[J]. Information Sciences, 2024, 665:?120406. [61] LI X, ZHU Z, ZHENG S, et al. Sylvester equation induced collaborative representation learning for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(9): 8811-8822. [62] YANG Z, QIN J, LIN C, et al. GANRec: a negative sampling model with generative adversarial network for recommendation[J]. Expert Systems with Applications, 2023, 214: 119155. [63] ZHU X, TANG G, WANG P, et al. Dynamic global structure enhanced multi-channel graph neural network for session-based recommendation[J]. Information Sciences, 2023, 624: 324-343. [64] QIAO S, ZHOU W, WEN J, et al. Multi-perspective enhanced representation for effective session-based recommendation[J]. Knowledge-Based Systems, 2023, 263: 110284. [65] ZHOU X, WANG Z, LIU X, et al. An improved context-aware weighted matrix factorization algorithm for point of interest recommendation in LBSN[J]. Information Systems, 2024,122: 102366. [66] YIN Z, HAN K, WANG P, et al. Multi global information assisted streaming session-based recommendation system[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(8): 8245-8256. [67] ZHU Y, LIANG X, DUAN H, et al. Node representation learning with graph augmentation for sequential recommendation[J]. Information Sciences, 2023, 646: 119405. [68] JANG D, LI Q, LEE C, et al. Attention-based multi attribute matrix factorization for enhanced recommendation performance[J]. Information Systems, 2024, 121: 102334. [69] PAN X, CAI X, SONG K, et al. Location recommendation based on mobility graph with individual and group influences[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(8): 8409-8420. [70] CHEN S, ZHOU S. An extended trust and distrust network-based dual fuzzy recommendation model and its application based on user-generated content[J]. Expert Systems with Applications, 2024, 248: 123360. [71] CAO T, XU Q, YANG Z, et al. Mitigating confounding bias in practical recommender systems with partially inaccessible exposure status[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(2): 957-974. [72] GAO R, TAO Y, YU Y, et al. Self-supervised dual hypergraph learning with intent disentanglement for session-based recommendation[J]. Knowledge-Based Systems, 2023, 270: 110528. |
[1] | 许智宏, 张天润, 王利琴, 董永峰. 融合图谱重构的时序知识图谱推理[J]. 计算机工程与应用, 2024, 60(9): 181-187. |
[2] | 赵博, 王宇嘉, 倪骥. E-TUP:融合E-CP与TUP的联合知识图谱学习推荐方法[J]. 计算机工程与应用, 2024, 60(8): 99-109. |
[3] | 江钰哲, 成全. 图嵌入式双层图卷积网络药物推荐模型[J]. 计算机工程与应用, 2024, 60(7): 315-324. |
[4] | 赵文涛, 薛赛丽, 刘甜甜. 结合项目属性协作信号减少无关邻域的推荐[J]. 计算机工程与应用, 2024, 60(7): 101-107. |
[5] | 肖蕾, 李琪. 时序知识图谱补全方法研究综述[J]. 计算机工程与应用, 2024, 60(6): 43-54. |
[6] | 王永贵, 邹赫宇. 多任务联合学习的图卷积神经网络推荐[J]. 计算机工程与应用, 2024, 60(4): 306-314. |
[7] | 胡娟, 奚雪峰, 崔志明. 面向知识图谱的会话式机器阅读理解研究综述[J]. 计算机工程与应用, 2024, 60(3): 17-28. |
[8] | 姚奕, 陈朝阳, 杜晓明, 姚天磊, 李青尚, 孙鸣蔚. 多模态知识图谱构建技术及其在军事领域的应用综述[J]. 计算机工程与应用, 2024, 60(22): 18-37. |
[9] | 许凯嘉, 柳林, 王海龙, 刘静. 时序知识图谱补全研究综述[J]. 计算机工程与应用, 2024, 60(22): 38-57. |
[10] | 张婷, 杜方, 宋丽娟, 史英杰, 赵国栋, 李婷. 结合实体和关系消息传递的低资源知识图谱补全[J]. 计算机工程与应用, 2024, 60(22): 137-144. |
[11] | 许智宏, 邱鹏林, 王利琴, 董永峰. 基于历史对比学习的时序知识图谱补全[J]. 计算机工程与应用, 2024, 60(22): 154-161. |
[12] | 李源, 洛桑嘎登, 蒋卫丽. 融合外部知识和位置信息的中文命名实体识别[J]. 计算机工程与应用, 2024, 60(22): 162-171. |
[13] | 王文豪, 殷旅江, 鄢曹政, 牟光远. 基于文献计量和知识图谱的电动车辆路径问题研究综述[J]. 计算机工程与应用, 2024, 60(2): 46-62. |
[14] | 唐闻涛, 胡泽林. 农业知识图谱研究综述[J]. 计算机工程与应用, 2024, 60(2): 63-76. |
[15] | 刘文杰, 姚俊飞, 陈亮. k阶采样和图注意力网络的知识图谱表示模型[J]. 计算机工程与应用, 2024, 60(2): 113-120. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||