[1] 何雨岩. 基于深度学习的图像语义分割综述[J]. 长江信息通信, 2023, 36(1): 77-79.
HE Y Y. A survey of image semantic segmentation based on deep learning[J]. Yangtze River Information and Communication, 2023, 36(1): 77-79.
[2] 谭见文. 基于机器视觉的变电站巡检机器人自主导航技术研究[D]. 长春: 长春工程学院, 2022.
TAN J W. Research on autonomous navigation technology of substation inspection robot based on machine vision[D]. Changchun: Changchun Institute of Technology, 2022.
[3] 张晴晴, 史健芳. 基于语义分割网络的小样本表面缺陷检测[J]. 电子设计工程, 2021, 29(5): 180-189.
ZHANG Q Q, SHI J F. Small sample surface defect detection based on semantic segmentation network[J]. Electronic Design Engineering, 2021, 29(5): 180-189.
[4] 段续庭, 周宇康, 田大新, 等. 深度学习在自动驾驶领域应用综述[J]. 无人系统技术, 2021, 4(6): 1-27.
DUAN X T, ZHOU Y K, TIAN D X, et al. A review of the application of deep learning in the field of autonomous driving[J]. Unmanned System Technology, 2021, 4(6): 1-27.
[5] 周涛, 董雅丽, 霍兵强, 等. U-Net网络医学图像分割应用综述[J]. 中国图象图形学报, 2021, 26(9): 2058-2077.
ZHOU T, DONG Y L, HUO B Q, et al. Review of U-Net network medical image segmentation applications[J]. Chinese Journal of Image Graphics, 2021, 26(9): 2058-2077.
[6] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the NIPS, 2012.
[7] 胡潇菡. 基于生成对抗网络的半监督图像语义分割方法研究[D]. 西安: 西安电子科技大学, 2020.
HU X H. Research on semi supervised image semantic segmentation method based on generative adversarial network [D]. Xi’an: Xidian University, 2020
[8] KOLESNIKOV A, LAMPERT C H. Seed, expand and constrain: three principles for weakly-supervised image segmentation[C]//Proceedings of the European Conference on Computer Vision, 2016.
[9] WEI Y, LIANG X, CHEN Y, et al. STC: a simple to complex framework for weakly-supervised semantic segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(11): 2314-2320.
[10] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems, 2014, 27.
[11] 孙天鹏. 基于GAN的局部写实感漫画图像风格迁移方法研究[D]. 南京: 南京邮电大学, 2022.
SUN T P. Research on GAN based local realistic cartoon image style transfer method[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2022.
[12] 盛煜炜. 基于条件生成对抗网络的数据集扩充在右心室分割中的应用研究[D]. 苏州: 苏州大学, 2021.
SHENG Y W. Research on the application of data set expansion based on conditional generative adversarial network in right ventricle segmentation[D]. Suzhou: Suzhou University, 2021.
[13] WANG P, BAI X. Thermal infrared pedestrian segmentation based on conditional GAN[J]. IEEE Transactions on Image Processing, 2019, 28(12): 6007-6021.
[14] HUNG W C, TSAI Y H, LIOU Y T, et al. Adversarial learning for semi-supervised semantic segmentation[C]//Proceedings of the British Machine Vision Conference (BMVC), 2018.
[15] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv:1511.06434, 2015.
[16] BROCK A, DONAHUE J, SIMONYAN K. Large scale GAN training for high fidelity natural image synthesis[J]. arXiv:1809.11096, 2018.
[17] SHRIVASTAVA A, PFISTER T, TUZEL O, et al. Learning from simulated and unsupervised images through adversarial training[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2107-2116.
[18] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2223-2232.
[19] 苏晨, 任志俊, 范彪, 等. 基于注意力机制与ResNet的残余奥氏体评级研究[J]. 轻工机械, 2023, 41(2): 78-84.
SU C, REN Z J, FAN B. Research on residual austenite rating based on attention mechanism and ResNet[J]. Light Industry Machinery, 2023, 41(2): 78-84.
[20] HOWARD A G, ZHU M, CHEN B, et al.MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861,2017.
[21] 王士斌, 高梓雕, 刘栋. 一种基于有限数据的改进DCGAN图像生成方法[J]. 河南师范大学学报(自然科学版), 2023,51(6): 39-46.
WANG S B, GAO Z D, LIU D. An improved DCGAN image generation method based on limited data[J]. Journal of Henan Normal University(Natural Science Edition), 2023,51(6): 39-46.
[22] 王可, 沈川贵, 罗孟华. 基于深度学习的图像语义分割方法综述[J]. 信息技术与信息化, 2022(4): 23-30.
WANG K, SHEN C G, LUO M H. Overview of image semantic segmentation methods based on deep learning[J]. Information Technology and Informationization, 2022(4): 23-30.
[23] AHN J, KWAK S. Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4981-4990.
[24] WEI Y, FENG J, LIANG X, et al. Object region mining with adversarial erasing: a simple classification to semantic segmentation approach[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1568-1576. |