[1] 罗岩, 冯天波, 邵洁. 基于注意力及视觉 Transformer 的野外人脸表情识别[J]. 计算机工程与应用, 2022, 58(10):200-207.
LUO Y, FENG T B, SHAO J. Facial expression recognition in wild based on attention and vision Transformer[J]. Computer Engineering and Applications, 2022, 58(10):200-207.
[2] 夏一雪, 兰月新, 刘茉, 等. 大数据环境下网络舆情反转机理与预测研究[J]. 情报杂志, 2018, 37(8): 92-96.
XIA Y X, LAN Y X, LIU M, et al. Inversion mechanism and prediction of network public opinion in big data environment[J]. Journal of Intelligence, 2018, 37(8): 92-96.
[3] 田俊静, 兰月新, 夏一雪, 等. 基于决策树方法的网络舆情反转识别与实证研究[J]. 情报杂志, 2019, 38(8): 121-125.
TIAN J J, LAN Y X, XIA Y X, et al. Recognition and empirical study of network public opinion reversal based on decision tree method[J]. Journal of Intelligence, 2019, 38(8): 121-125.
[4] 袁野, 兰月新, 张鹏, 等. 基于系统聚类的反转网络舆情分类及预测研究[J]. 情报科学, 2017, 35(9): 54-60.
YUAN Y, LAN Y X, ZHANG P, et al. Research on the classification and forecast of reversal network public opinion based on cluster analysis[J]. Information Science, 2017, 35(9): 54-60.
[5] 田世海, 孙美琪, 张家毓. 基于贝叶斯网络的自媒体舆情反转预测[J]. 情报理论与实践, 2019, 42(2): 127-133.
TIAN S H, SUN M Q, ZHANG J Y. Public of we-media public opinion reversion based on Bayesian network[J]. Information Studies: Theory & Application, 2019, 42(2): 127-133.
[6] 李晚莲, 蒋化, 曾锋. 突发公共事件网络舆情反转强度生成机理研究——基于多案例的fsQCA分析[J]. 情报杂志, 2022, 41(11): 129-136.
LI W L, JIANG H, ZENG F . Research on generating mechanism of reversal intensity of network public opinion in public emergencies—fsQCA analysis based on multiple cases[J]. Journal of Intelligence, 2022, 41(11): 129-136.
[7] 江长斌, 邹悦琦, 王虎, 等. 基于SVM的自媒体舆情反转预测研究[J]. 情报科学, 2021, 39(4): 47-53.
JIANG C B, ZOU Y Q, WANG H, et al. Research on prediction for reversal of we-media public opinion based on SVM[J]. Information Science, 2021, 39(4): 47-53.
[8] 丛靖怡, 艾文华, 胡广伟. 基于信息交互视角的突发公共事件舆情反转治理路径研究[J]. 情报学报, 2022, 41(6): 594-608.
CONG J Y, AI W H, HU G W. Research on the governance path of the public opinion reversal of emergency: based on information interaction perspective[J] Journal of the China Society for Scientific and Technology Information, 2022, 41(6): 594-608.
[9] 王楠, 李海荣, 谭舒孺. 基于改进SMOTE算法与集成学习的舆情反转预测研究[J]. 数据分析与知识发现, 2021, 5(4): 37-48.
WANG N, LI H R, TAN S R. Predicting of public opinion reversal with improved SMOTE algorithm and ensemble learning[J]. Data Analysis and Knowledge Discovery, 2021, 5(4): 37-48.
[10] 王楠, 李海荣, 谭舒孺. 基于舆情事件演化分析及改进KE-SMOTE算法的舆情反转预测研究[J]. 数据分析与知识发现, 2022, 6(2): 396-407.
WANG N, LI H R, TAN S R. Predicting public opinion reversal based on evolution analysis of events and improved KE-SMOTE algorithm[J]. Data Analysis and Knowledge Discovery, 2022, 6(2): 396-407.
[11] 彭国超, 程晓. 基于社会燃烧理论的反转新闻舆情热度生成机理研究[J]. 情报科学, 2023, 41(1): 80-85.
PENG G C, CHENG X. The generation mechanism of reversal news public opinion based on social burning theory[J]. Information Science, 2023, 41(1): 80-85.
[12] 闫婷瑞, 王栋, 肖立中, 等. 基于AR-RBF的舆情趋势预测模型仿真[J]. 计算机仿真, 2021, 38(4): 437-441.
YAN T R, WANG D, XIAO L Z, et al. Simulation of public opinion trend prediction model based on AR-RBF[J]. Computer Simulation, 2021, 38(4): 437-441.
[13] 何婕君, 李阳. 基于时空视角的舆情反转事件情感演化特征研究[J]. 信息资源管理学报, 2022, 12(2): 88-100.
HE J J, LI Y. Research on the emotional evolution characteristics of public opinion reversal events based on time and space perspective[J]. Journal of Information Resources Management, 2022, 12(2): 88-100.
[14] 徐阳, 朱良奇, 黄勃, 等. 基于EEMD-Transformer模型的舆情分析: 以COVID-19舆情为例[J]. 武汉大学学报 (理学版), 2020, 66(5): 418-424.
XU Y, ZHU L Q, HUANG B, et al. Public opinion analysis based on EEMD?Transformer model: taking COVID?19 public opinion as an example[J]. Journal of Wuhan University(Natural Science Edition), 2020, 66(5): 418-424.
[15] 张霁阳, 张鹏, 兰月新, 等. 基于动态主题聚类的网络舆情反转识别模型构建与实证研究[J]. 情报理论与实践, 2023, 46(10): 174-182.
ZHANG J Y, ZHANG P, LAN Y X, et al. Construction and empirical study of online public opinion inversion identification model based on dynamic topic clustering[J]. Information Studies: Theory & Application, 2023, 46(10): 174-182.
[16] 郑青. 后真相时代的舆论反转与引导策略研究[J]. 国际公关, 2023(12): 37-39.
ZHENG Q. Research on public opinion reversal and guiding strategies in the post truth era[J]. PR Magazine, 2023 (12): 37-39.
[17] RINKER K, FüRNKRANZ J, HüLLERMEIER E. A unified model for multilabel classification and ranking[C]// Proceedings of the 2006 Conference on ECAI 2006, 17th European Conference on Artificial Intelligence, Riva del Garda, Italy, 2006: 489-493. |