[1] MILLER J J. Graph database applications and concepts with Neo4j[C]//Proceedings of the Southern Association for Information Systems Conference, Atlanta, GA, USA, 2013.
[2] Tencent Cloud Team. Graph database performance comparison: Neo4j vs NebulaGraph vs JanusGraph[EB/OL]. (2020). https://www.nebula-graph.io/posts/performance-comparison-neo4j-janusgraph-nebula-graph.
[3] MONTEIRO J, Sá F, BERNARDINO J. Experimental evaluation of graph databases: JanusGraph, Nebula Graph, Neo4j, and TigerGraph[J]. Applied Sciences, 2023, 13(9): 5770.
[4] URBANI J, JACOBS C. Adaptive low-level storage of very large knowledge graphs[C]//Proceedings of The Web Conference, 2020: 1761-1772.
[5] LI S, CHEN W, LIU B, et al. OntoSP: ontology-based semantic-aware partitioning on RDF graphs[C]//Proceedings of the 22nd International Conference on Web Information Systems Engineering (WISE 2021), Melbourne, VIC, Australia, October 26-29, 2021. [S.l.]: Springer International Publishing, 2021: 258-273.
[6] MATSUNOBU Y, DONG S, LEE H. MyRocks: LSM-tree database storage engine serving facebook’s social graph[J]. Proceedings of the VLDB Endowment, 2020, 13(12): 3217-3230.
[7] Under the hood: building and open-sourcing rocksdb[EB/OL]. (2017-05-11) [2023-07-13]. http://goo.gl/9xulVB.
[8] DAGEVILLE B, CRUANES T, ZUKOWSKI M, et al. The snowflake elastic data warehouse[C]//Proceedings of the 2016 International Conference on Management of Data, 2016: 215-226.
[9] BURAGOHAIN C, RISVIK K M, BRETT P, et al. A1: a distributed in-memory graph database[C]//Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, 2020: 329-344.
[10] HUANG X, YANG Y, WANG Y, et al. Dgraph: a large-scale financial dataset for graph anomaly detection[C]//Advances in Neural Information Processing Systems, 2022: 22765-22777.
[11] Sbadger: A fast key-value store written natively in go[CP/OL]. (2020-09-12) [2023-07-11]. https://github.com/dgraph-io/badger.
[12] DONG S, CALLAGHAN M, GALANIS L, et al. Optimizing space amplification in RocksDB[C]//Conference on Innovative Data Systems Research, 2017.
[13] CAO Z, DONG S. Characterizing, modeling, and benchmarking RocksDB key-value workloads at Facebook[C]//18th USENIX Conference on File and Storage Technologies (FAST’20), 2020.
[14] WANG Y, CHAI Y. vRaft: accelerating the distributed consensus under virtualized environments[C]//Proceedings of 26th International Conference on Database Systems for Advanced Applications (DASFAA 2021), Taipei, China, April 11-14, 2021. [S.l.]: Springer International Publishing, 2021: 53-70.
[15] WANG Y, WANG Z, CHAI Y, et al. Rethink the linearizability constraints of raft for distributed key-value stores[C]//2021 IEEE 37th International Conference on Data Engineering (ICDE), 2021: 1877-1882.
[16] GAO S, ZHAN B, LIU D, et al. Formal verification of consensus in the taurus distributed database[C]//Proceedings of 24th International Symposium on Formal Methods (FM 2021), Virtual Event, November 20-26, 2021. [S.l.]: Springer International Publishing, 2021: 741-751.
[17] BALMAU O, DINU F, ZWAENEPOEL W, et al. SILK: preventing latency spikes in log-structured merge key-value stores[C]//USENIX Annual Technical Conference, 2019: 753-766.
[18] CHAI Y P, CHAI Y F, WANG X, et al. LDC: a lower-level driven compaction method to optimize SSD-oriented key-value stores[C]//2019 IEEE 35th International Conference on Data Engineering (ICDE), 2019: 722-733.
[19] CHAI Y P, CHAI Y F, WANG X, et al. Adaptive lower-level driven compaction to optimize LSM-tree key-value stores[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(6): 2595-2609.
[20] KARGAR S, NAWAB F. Hamming tree: the case for energy-aware indexing for NVMs[J]. Proceedings of the ACM on Management of Data, 2023, 1(2): 1-27.
[21] WU F, YANG M H, ZHANG B, et al. AC-key: adaptive caching for LSM-based key-value stores[C]//Proceedings of the 2020 USENIX Conference on Usenix Annual Technical Conference, 2020: 603-615.
[22] SARKAR S, PAPON T I, STARATZIS D, et al. Lethe: a tunable delete-aware LSM engine[C]//Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, 2020: 893-908.
[23] RUTA N J. CuttleTree: adaptive tuning for optimized log-structured merge trees[D]. Harvard University, 2018.
[24] YU J, NOH S H, CHOI Y, et al. ADOC: automatically harmonizing dataflow between components in log-structured key-value stores for improved performance[C]//21st USENIX Conference on File and Storage Technologies (FAST 23), 2023: 65-80.
[25] SHENG Y, CAO X, FANG Y, et al. WISK: a workload-aware learned index for spatial keyword queries[J]. Proceedings of the ACM on Management of Data, 2023, 1(2): 1-27.
[26] ZHOU X, LI G, FENG J, et al. Grep: a graph learning based database partitioning system[J]. Proceedings of the ACM on Management of Data, 2023, 1(1): 1-24.
[27] LevelDB-a fast and lightweight key/value database library by google[EB/OL]. (2017-08-07) [2023-07-13]. http://code.google.com/p/leveldb. |