[1] 刘博, 于洋, 姜朔. 激光雷达探测及三维成像研究进展[J]. 光电工程, 2019, 46(7): 15-27.
LIU B, YU Y, JIANG S. Review of advances in LiDAR detection and 3D imaging[J]. Opto-Electronic Engineering, 2019, 46(7): 15-27.
[2] 李长乐, 王硕, 岳文伟, 等. 面向空地一体化交通的虚拟车道: 发展阶段与关键技术[J]. 电子学报, 2022, 50(5): 1255-1265.
LI C L, WANG S, YUE W W, et al. Virtual lanes for air-ground integrated transportation systems: evolution and key techniques[J]. Acta Electronica Sinica, 2022, 50(5): 1255-1265.
[3] 王耀南, 江一鸣, 姜娇, 等. 机器人感知与控制关键技术及其智能制造应用[J]. 自动化学报, 2023, 49(3): 494-513.
WANG Y N, JIANG Y M, JIANG J, et al. Key technologies of robot perception and control and its intelligent manufacturing applications[J]. Acta Automatica Sinica, 2023, 49(3): 494-513.
[4] 何晖光, 田捷, 赵明昌, 等. 基于分割的三维医学图像表面重建算法[J]. 软件学报, 2002(2): 219-226.
HE H G, TIAN J, ZHAO M C, et al. A 3D medical image surface reconstruction scheme based on segmentation[J]. Journal of Software, 2002(2): 219-226.
[5] 李佳男, 王泽, 许廷发. 基于点云数据的三维目标检测技术研究进展[J]. 光学学报, 2023, 43(15): 296-312.
LI J N, WANG Z, XU T F. Three-dimensional object detection technology based on point cloud data[J]. Acta Optica Sinica, 2023, 43(15): 296-312.
[6] 张冬冬, 郭杰, 陈阳. 基于原始点云的三维目标检测算法[J]. 计算机工程与应用, 2023, 59(3): 209-217.
ZHANG D D, GUO J, CHEN Y. 3D object detection algorithm based on raw point clouds[J]. Computer Engineering and Applications, 2023, 59(3) : 209-217.
[7] QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 652-660.
[8] SHI S, WANG X, LI H. PointRCNN: 3D object proposal generation and detection from point cloud[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 770-779.
[9] SHI S, WANG Z, WANG X, et al. Part-A2 Net: 3D part-aware and aggregation neural network for object detection from point cloud[J]. arXiv:1907.03670, 2019.
[10] PAN X, XIA Z, SONG S, et al. 3D object detection with pointformer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 7463-7472.
[11] ZHOU Y, TUZEL O. Voxelnet: end-to-end learning for point cloud based 3D object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4490-4499.
[12] YAN Y, MAO Y, LI B. SECOND: sparsely embedded convolutional detection[J]. Sensors, 2018, 18(10): 3337.
[13] YANG Z, SUN Y, LIU S, et al. STD: sparse-to-dense 3D object detector for point cloud[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1951-1960.
[14] SHI S, GUO C, JIANG L, et al. PV-RCNN: point-voxel feature set abstraction for 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10529-10538.
[15] DENG J, SHI S, LI P, et al. Voxel-RCNN: towards high performance voxel-based 3D object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 1201-1209.
[16] LANG A H, VORA S, CAESAR H, et al. PointPillars: fast encoders for object detection from point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 12697-12705.
[17] 黄远宪, 李必军, 黄琦, 等. 融合相机与激光雷达的目标检测、跟踪与预测[J/OL]. 武汉大学学报 (信息科学版): 1-8[2023-09-11]. https://doi.org/10.13203/j.whugis20210614.
HUANG Y X, LI B J, HUANG Q, et al. Camera-lidar fusion for object detection, tracking and prediction[J/OL]. Geomatics and Information Science of Wuhan University: 1-8[2023-09-11]. https://doi.org/10.13203/j.whugis20210614.
[18] VORA S, LANG A H, HELOU B, et al. PointPainting: sequential fusion for 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 4604-4612.
[19] PANG S, MORRIS D, RADHA H. CLOCs: camera-LiDAR object candidates fusion for 3D object detection[C]//Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020: 10386-10393.
[20] CHEN X, MA H, WAN J, et al. Multi-view 3D object detection network for autonomous driving[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1907-1915.
[21] KU J, MOZIFIAN M, LEE J, et al. Joint 3D proposal generation and object detection from view aggregation[C]//Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018: 1-8.
[22] SINDAGI V A, ZHOU Y, TUZEL O. MVX-Net: multimodal VoxelNet for 3D object detection[C]//Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), 2019: 7276-7282.
[23] HUANG T, LIU Z, CHEN X, et al. EPNet: enhancing point features with image semantics for 3D object detection[C]//Proceedings of 16th European Conference on Computer Vision (ECCV), 2020: 35-52.
[24] YOO J H, KIM Y, KIM J, et al. 3D-CVF: generating joint camera and lidar features using cross-view spatial feature fusion for 3D object detection[C]//Proceedings of 16th European Conference on Computer Vision (ECCV), 2020: 720-736.
[25] HE K, SUN J. Convolutional neural networks at constrained time cost[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 5353-5360.
[26] GARHAM B. Sparse 3D convolutional neural networks[J]. arXiv:1505.02890, 2015.
[27] GARHAM B, VAN D, MAATEN L. Submanifold sparse convolutional networks[J]. arXiv:1706.01307, 2017.
[28] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[29] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving!the kitti vision benchmark suite[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012: 3354-3361.
[30] 王妍. 基于点云与图像多模态融合的三维目标检测[D]. 广州: 华南理工大学, 2022.
WANG Y. 3D object detection based on multi-modal fusion of point cloud and image[D]. Guangzhou: South China University of Technology, 2022.
[31] 鲁斌, 孙洋, 杨振宇. 融合体素图注意力的三维目标检测算法[J/OL]. 智能系统学报: 1-12[2023-09-26]. http://kns.cnki.net/kcms/detail/23.1538.TP.20230914.0902.002.html.
LU B, SUN Y, YANG Z Y. 3D object detection with voxel graph attention from point cloud[J/OL]. CAAI Transactions on Intelligent Systems: 1-12[2023-09-26]. http://kns.cnki.net/kcms/detail/23.1538.TP.20230914.0902.002.html.
[32] 李海宁. 基于改进点密度感知的三维目标检测方法研究[D]. 西安: 西安理工大学, 2023.
LI H N. Research on 3D object detection method based on improved point density perception[D]. Xi’an: Xi’an University of Technology, 2023.
[33] 宋润泽. 复杂道路场景下多传感器三维目标检测方法研究[D]. 长春: 吉林大学, 2023.
SONG R Z. Research on multi-sensor 3D object detection algorithms in complex road scenarios[D]. Changchun: Jilin University, 2023.
[34] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[35] HOWARD A, SANDLER M, CHU G, et al. Searching for MobileNetV3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324.
[36] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[37] 车运龙, 袁亮, 孙丽慧. 基于强语义关键点采样的三维目标检测方法[J]. 计算机工程与应用, 2024, 60(9): 254-260.
CHE Y L, YUAN L, SUN L H. 3D object detection based on strong semantic key point sampling[J]. Computer Engineering and Applications, 2024, 60(9): 254-260.
[38] 胡杰, 安永鹏, 徐文才, 等. 基于激光点云的深度语义和位置信息融合的三维目标检测[J]. 中国激光, 2023, 50(10): 200-210.
HU J, AN Y P, XU W C, et al. 3D object detection based on deep semantics and position information fusion of laser point cloud[J]. Chinese Journal of Lasers, 2023, 50(10): 200-210. |