计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (13): 1-22.DOI: 10.3778/j.issn.1002-8331.2309-0489

• 热点与综述 • 上一篇    下一篇

网络威胁技战术情报自动化识别提取研究综述

于丰瑞   

  1. 1.中国人民公安大学 信息网络安全学院,北京 100038
    2.内蒙古警察职业学院 图书馆,呼和浩特 010051
  • 出版日期:2024-07-01 发布日期:2024-07-01

Survey on Automated Recognition and Extraction of TTPs

YU Fengrui   

  1. 1.Institute of Information and Network Security, People’s Public Security University of China, Beijing 100038, China
    2.Library, Inner Mongolia Police Professional College, Hohhot 010051, China
  • Online:2024-07-01 Published:2024-07-01

摘要: 当今网络威胁不断涌现,网络威胁技战术情报能够多维度挖掘网络恶意活动,细粒度展示网络安全态势,全方位刻画网络攻击行为。目前对于网络威胁技战术情报自动化识别提取任务的研究成果较多,但缺乏系统化梳理。基于传统自然语言处理、机器学习和大语言模型三种研究思路,深入分析了相关研究进展,对应信息抽取、文本分类、文本生成三类任务,概括了一般识别提取流程框架,明确了非结构化文本、网络威胁技战术情报范围,细化了每种技术方法的处理分析实践流程及创新方向,并基于现有研究工作,提出了当前研究存在的问题及未来的研究和发展方向,为读者运用新技术新方法促进领域研究水平提升提供了文献综述支持。

关键词: 网络威胁情报, 网络威胁技战术情报(TTPs), 深度学习, 大语言模型, 自然语言处理

Abstract: In the ever-evolving landscape of cyber threats, tactics, techniques and procedures (TTPs) play a crucial role in understanding malicious activities, providing a fine-grained perspective on the status of cybersecurity, and comprehensively illustrating cyber attack behaviors. Despite significant research efforts in the field of automated identification and extraction of TTPs, a comprehensive systematic review is currently lacking. This paper presents an in-depth analysis of the progress in this area by employing three principal approaches:traditional natural language processing, machine learning, and large language models. The study categorizes the tasks into information extraction, text classification, and text generation, and presents a summary of the general framework for identification and extraction processes. It offers a clear scope of unstructured text and TTPs, while refining the processing and analysis procedures, as well as innovative directions for each approaches. Moreover, building upon existing research, the paper identifies current challenges and proposes future research directions and development opportunities. This comprehensive survey serves as a valuable literature review to support readers in applying advanced technologies and methods for advancing research in this field.

Key words: cyber threat intelligence (CTI), tactics, techniques and procedures (TTPs), deep learning, large language models (LLMs), natural language processing (NLP)