[1] ASKELAND J, LEVINSON J, BECKER J, et al. Towards fully autonomous driving systems and algorithms[C]//IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Jun 5-9, 2011. New York: IEEE, 2011: 163-168.
[2] JANAI J, GüNEY F, BEHL A, et al. Computer vision for autonomous vehicles: problems, datasets and state of the art[J]. Foundations and Trends? in Computer Graphics and Vision, 2020, 12(1/3): 1-308.
[3] MAHAUR B, MISHRA K K. Small-object detection based on YOLOv5 in autonomous driving systems[J]. Pattern Recognition Letters, 2023, 168: 115-122.
[4] ZHOU Y, WEN S J, WANG D L, et al. MobileYOLO: real-time object detection algorithm in autonomous driving scenarios[J]. Sensors, 2022, 22(9): 3349.
[5] 余以春, 李明旭. 改进YOLOv5s的自动驾驶汽车目标检测[J]. 计算机系统应用, 2023, 32(9): 97-105.
YU Y C, LI M X. Improved YOLOv5s for autonomous vehicle target detection[J]. Computer Systems and Applications, 2023, 32(9): 97-105.
[6] 任钰. 基于Faster R-CNN的小目标检测研究与应用[D]. 安庆: 安庆师范大学, 2022.
REN Y. Research and application of small object detection based on Faster R-CNN[D]. Anqing: Anqing Normal University, 2022.
[7] WANG H, XU Y S, WANG Z N, et al. Centernet-auto: a multi?object visual detection algorithm for autonomous driving scenes based on improved centernet[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2023, 7(3): 742-752.
[8] 谢若冰, 李茂军, 李宜伟, 等. 改进YOLOX-s的密集垃圾检测方法[J]. 计算机工程与应用, 2024, 60(5): 250-258.
XIE R B, LI M J, LI Y W, et al. Improving YOLOX-s dense garbage detection method[J]. Computer Engineering and Applications, 2024, 60(5): 250-258.
[9] 王鹏, 王玉林, 焦博文, 等. 基于YOLOv5的道路目标检测算法研究[J]. 计算机工程与应用, 2023, 59(1): 117-125.
WANG P, WANG Y L, JIAO B W, et al. Research on road target detection algorithm based on YOLOv5[J]. Computer Engineering and Applications, 2023, 59(1): 117-125.
[10] CAO Y N, LI C, PENG Y K, et al. MCS-YOLO: a multiscale object detection method for autonomous driving road environment recognition[J]. IEEE Access, 2023, 11: 22342-22354.
[11] WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), Munich, Sep 8-14, 2018. Berlin: Springer, 2018: 3-19.
[12] WU S Y, YAN Y B, WANG W Q. CF-YOLOx: an autonomous driving detection model for multi-scale object detection[J]. Sensors, 2023, 23(8): 3794.
[13] LI G F, FAN W Q, XIE H, et al. Detection of road objects based on camera sensors for autonomous driving in various traffic situations[J]. IEEE Sensors Journal, 2022, 22(24): 24253-24263.
[14] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, Jun14-19, 2020. Piscataway, NJ: IEEE, 2020: 11534-11542.
[15] 陈垦, 欧鸥, 杨长志, 等. 基于改进YOLOX的落石检测方法[J]. 计算机测量与控制, 2023, 31(11): 53-59.
CHEN K, OU O, YANG C Z, et al. Rockfall detection method based on improved YOLOX[J]. Computer Measurement & Control, 2023, 31(11): 53-59.
[16] 刘昱杉, 刘卫康, 刘庆华, 等. 基于YOLOX结合DeepSort的船载车辆行人检测算法[J]. 计算机与现代化, 2023(8): 60-67.
LIU Y S, LIU W K, LIU Q H, et al. Pedestrian detection algorithm for ship?borne vehicles based on YOLOX combined with DeepSort[J]. Computer and Modernization, 2023(8): 60-67.
[17] 韩锟, 彭晶莹. 基于改进YOLOx与多级数据关联的行人多目标跟踪算法研究[J]. 铁道科学与工程学报, 2024, 21(1): 94-105.
HAN K, PENG J Y. Pedestrian multi-object tracking algorithm based on improved YOLOx and multi-level data association[J]. Journal of Railway Science and Engineering, 2024, 21(1): 94-105.
[18] 娄树理, 王岩, 郭建勤, 等. 改进YOLOX-S的红外舰船目标检测算法[J]. 应用光学, 2023, 44(5): 1054-1060.
LOU S L, WANG Y, GUO J Q, et al. Infrared ship target detection algorithm based on improved YOLOX-S[J]. Journal?of?Applied?Optics, 2023, 44(5): 1054-1060.
[19] GE Z, LIU S, WANG F, et al. Yolox: exceeding yolo series in 2021[J]. arXiv:2107.08430, 2021.
[20] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[21] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Hawaii, Jul 21-26, 2017. Piscataway, NJ: IEEE, 2017: 1251-1258.
[22] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, Jun 23-28, 2014. Piscataway, NJ: IEEE, 2014: 580-587.
[23] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[24] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, Oct 10-16. Berlin: Springer, 2016: 21-37.
[25] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, Jun 26-Jul 1, 2016. Piscataway, NJ: IEEE, 2016: 779-788.
[26] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[27] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, Jun 26-Jul 1, 2016. Piscataway, NJ: IEEE, 2016: 770-778.
[28] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Hawaii, Jul 21-26, 2017. Piscataway, NJ: IEEE, 2017: 2117-2125.
[29] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, Jun 18-22, 2018. Piscataway, NJ: IEEE, 2018: 8759-8768.
[30] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, Jun 18-22, 2018. Piscataway, NJ: IEEE, 2018: 7132-7141.
[31] XU L Z, YAN W, JI J S. The research of a novel wog-yolo algorithm for autonomous driving object detection[J]. Scientific Reports, 2023, 13(1): 3699.
[32] GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the kitti dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237.
[33] ZHANG H, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization[J]. arXiv:1710.09412, 2017.
[34] 胡淼, 姜麟, 陶友凤, 等. 改进YOLOv7的自动驾驶目标检测算法[J]. 计算机工程与应用, 2024, 60 (11): 165-172.
HU M, JIANG L, TAO Y F, et al. Improved YOLOv7 automatic driving object detection algorithm[J]. Computer Engineering and Applications, 2024, 60 (11): 165-172.
[35] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Oct 22-29, 2017. Piscataway, NJ: IEEE, 2017: 2980-2988.
[36] WANG C Y, YEH I H, LIAO H Y M. You only learn one representation: unified network for multiple tasks[J]. arXiv: 2105.04206, 2021.
[37] REDMON J, FARHADI A. Yolov3 an incremental improvement[J]. arXiv:1804.02767, 2018. |